Agilent 3499A/B/C

Switch/Control System

Agilent Technologies

© Copyright Agilent Technologies, Inc. 1999-2009

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies as governed by the United States and international copyright laws.

Manual Part Number

03499-90017, March 2009

Revision

Revision E, March 2009
Revision D, November 2002
Revision C, April 2002
Revision B, April 2000
Revision A, September 1999
Printed in Malaysia
Agilent Technologies, Inc.
815 14th Street S.W.
Loveland, Colorado 80537 U.S.A.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products. For assistance, contact your nearest Agilent Technologies Sales and Service Office. Further information is available on the Agilent web site at www.agilent.com/find/assist.

Trademark Information

Microsoft ${ }^{\circledR}$ and Windows ${ }^{\circledR}$ are U.S. registered trademarks of Microsoft Corporation. All other brand and product names are trademarks or registered trademarks of their respective companies.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by that organization's calibration facility, and to the calibration facilities of other International Standards Organization members.

Warranty

The material contained in this

 document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement will control.
Technologies Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure that safety features are maintained.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

Earth ground symbol.

Chassis ground symbol.

WARNING

Only qualified, service-trained personnel who are aware of the hazards involved should remove the cover from the instrument.

WARNING

For continued protection against fire, replace the line fuse only with a fuse of the specified type and rating.

User's Guide

Publication Number 03499-90017
Revision A, September 1999
Revision B, April 2000
Revision C, April 2002
Revision D, November 2002
Revision E, March 2009

© Copyright Agilent Technologies, Inc. 1999-2009

Agilent 3499A/B/C Switch/Control System

Agilent 3499A/B/C at a Glance

The Agilent Technologies 3499A/B/C Switch/Control System provides a convenient mechanical and programming environment for a variety of plug-in modules. With appropriate plug-in modules, the Switch/Control System provides high density/high speed switching and digital I/O capability.

Switch/Control System Features

- Intuitive and easy-to-use user interface
- GPIB (IEEE 488) or RS-232 interface control
- External triggering capability
- Built-in 4-bit digital I/O port
- Store and recall up to 50 customized instrument setups
- SCPI (Standard Commands for Programmable Instruments) compatibility
- Relay cycle count information for preventive maintenance
- Downloadable firmware upgrades

Agilent 3499A Features

- Five plug-in slots
- Full rack width

Agilent 3499B Features

- Two plug-in slots
- Half rack width

Agilent 3499C Features

- Nine plug-in slots
- Full rack width

Note: Unless otherwise indicated, this manual applies to all Serial Numbers.

Plug-in Modules at a Glance

The Agilent 3499A/B/C mainframes support a variety of plug-in modules to make test system configuration easy. Each module is described in more detail later in this manual.

Multiplexer Modules

N2260A 40-Channel MUX Module (armature relays)
N 2266A 40-Channel MUX M odule (reed relays)
N2270A 10-Channel High Voltage MUX M odule
44470A 10-Channel MUX Module
44470D 20-Channel MUX Module

General Purpose Relay Modules

N2261A 40-Channel GP Relay Module
N 2267A 8-Channel High Current GP Module 44471A 10-Channel GP Relay Module 44471D 20-Channel GP Relay Module 44477A 7-Channel Form-C Relay M odule

Matrix Modules

N2262A 4×8 Matrix M odule
44473A 4×4 Matrix Module

High Frequency Switching Modules

N2268A 50Ω 3.0 GHz Dual 4-to-1 MUX Module N2272A 1 GHz RF 1-to-9 MUX Module N2276A/B Dual 1-to-6 (4) Microwave MUX/Attenuator M odule 44472A Dual 4-Channel VHF Switch Module $44478 \mathrm{~A} / \mathrm{B} 50 \Omega / 75 \Omega 1.3 \mathrm{GHz}$ Multiplexer 44476A 3-Channel 18 GHz Switch M odule 44476B 2-Channel Microwave Switch Module

Optical Switch Modules

N2280A Optical Switch Quad 1-to-2 MUX Module N 2281A Optical Switch Dual 1-to-4 MUX M odule N 2282A Optical Switch 1-to-8 MUX Module

Digital I/O Modules

N2263A 32-Bit Digital I/O Module 44474A 16-Bit Digital I/O M odule

Multifunction/Special Purpose Modules

N2264A 12-Channel GP \& 3-Channel High-current GP \& 16-Bit Digital I/O N2265A 4×4 Matrix \& 16-Bit Digital I/O Module 44475A Breadboard M odule

The Front Panel at a Glance

1. Power On/Standby
2. Reset Module/Instrument
3. Shift/Local
4. Store/Recall Instrument State
5. Monitor Channel/Port/Module
6. View Menu
7. Mode Menu
8. Scan Keys (see page 85)
9. Main Menu
10. Open/Close Relay Channels
11. Enter a Value/Confirm Selection
12. Read/Write Digital I/O Ports
13. Knob
14. Navigation Arrow Keys

Note

 The front panel shown above is the Agilent 3499B. The 3499A and 3499C front panels are similar and have identical functionality.
The Display at a Glance

Channel/Slot Number

The display is divided into several areas. The channel and slot number is always displayed on the right corner of the display. The main area, which is in the center of the display, is primarily used to display channel status (open or closed), information messages, menu items, prompt information, error messages, and so on. Around the display are annunciators to indicate various states of the instrument operation. The annunciators are summarized below.

Annunciator	Indication
SCAN	Scan is initiated.
MON	Instrument is in monitor mode.
VIEW	Scan list, errors or relay cycle counts are being viewed.
CONFIG	Any configuration key has been pressed.
*	Instrument is advancing a scan step.
ADRS	Instrument is active on the remote interface.
RMT	Instrument is in remote mode.
ERROR	Error queue is not empty.
EXT	Scan is waiting for external trigger source.
SHIFT	Shift key has been pressed.

Other annunciators in the display are not used in the Agilent 3499A/B/C system.

The Rear Panel at a Glance

The figure below shows the Agilent 3499A rear panel.

The figure below shows the Agilent 3499B rear panel.

The figure below shows the Agilent 3499C rear panel.
Option FP1 (1-slot) and FP2 (2-slot) filler panels can be ordered to cover any unused slots.

WARNING
For protection from electrical shock, the power cord ground must not be defeated.

The Mini DIN Connector

The rear panel mini DIN connector is used to make connections to external triggers and the built-in digital I/O port. An Agilent N2289A cable (mini DIN to D9) can be ordered to assist connections to external devices. The figure below shows the pins used in the mini DIN connector.

	Pins	Description
	1	DIO 091
Mini DIN	2	DIO 092
Connector	3	DIO 093
	4	DIO 094
-		GROUND (TRIG)
-	6	GROUND (DIO)
\cdots	7	Ext.Trig.In
${ }_{7} \mathrm{CaO}_{8}$	8	Ext.Trig.Out

In This Book

Quick Start Chapter 1 prepares the switch/control system for use and helps you get familiar with a few of its front-panel features.

Front-Panel Menu Operation Chapter 2 introduces you to the frontpanel menu and describes some of the switch/control system's menu features.

System Overview Chapter 3 gives an overview of a switch/control system, describes how parts of the system work together, and describes the channel addressing scheme used.

Features and Functions Chapter 4 gives a detailed description of the switch/control system's capabilities and operation. This chapter is useful for operating the switch/control system from the front panel or the remote interface.

Remote Interface Reference Chapter 5 contains a SCPI Ianguage reference used to program the switch/control system over a remote interface.

Error Messages Chapter 6 lists the error messages that may appear as you are working with the instrument.

Plug-in Modules Chapter 7 gives detailed information for each plug-in module. E ach module and its wiring is described. Additionally, wiring information for terminal blocks, crimp-and-insert connections, BNC and SMA connections, and special cables is included.

Application Programs Chapter 8 contains several remote interface application programs to help you develop programs for your switch/ control system.

Specifications Chapter 9 lists the technical specifications for the mainframe and plug-in modules.

If you have questions relating to the operation of the Agilent 3499A/B/C, call 1-800-452-4844 in the United States, or contact your nearest Agilent Technologies Sales Office.

If your 3499A/B/C fails within one year of purchase, Agilent will either repair or replace it free of charge. Call 1-877-447-7278 in the United States (and ask for "Agilent Express") or contact your local Agilent Technologies Sales Office.

Contents

Chapter 1 Quick Start 13

To Prepare the Instrument for Use 15
ToInstall a Module in the 3499A/B/C 17
Basic Operation 19
To Rack Mount the 3499A/B/C 23
Filler Panels 26

Chapter 2 Front-Panel Operation 27

To Power On the Instrument 29
To Monitor a Channel or a Slot 29
ToUse a Digital I/O Port 31
To View Instrument Errors 36
Scanning Operation 38
To Pair Two M odules Together 41
To Configure for External Trigger 42
To Configure the Power-on State 44
To Configure the Remote Interface 46
To Perform a Self-test 51
To Query the Firmware Revision 52
To Query the Serial Number 53
Local/Remote Control 54

Chapter 3 System Overview 55

Agilent 3499A/B/C Switch/Control System 57
Mainframes Overview 58
Firmware and Control Module Description 59
Plug-in Modules Overview 61
Channel and Slot Addressing 70
F actory Default and Reset States 74

Chapter 4 Features and F unctions 77

SCPI Language Conventions 79
Monitoring a Channel or a Slot 80
Switching a Relay Channel 82
Configuring a Multiplexer Module 83
Parallel Switching 84
Scanning 85
Digital I/O Operation 95
State Storage 106
Error Conditions 108
Self-Test 109
Display Control 110
Relay Cycle Counts 111
To Select the System M ode 112

Chapter 5 Remote Interface Reference 113

SCPI Command Syntax 115
3499A/B/C SCPI Alphabetical Reference 116
3499A/B/C SCPI Commands F unctionally Grouped 122
Switch Commands 127
Specific Plug-in Module Commands 129
Scanning Commands 132
Digital I/O Commands 139
State Storage Commands 147
Status System Commands 148
System Information Commands 153
System-Level Control Commands 156
RS-232 Commands 160
About the SCPI Language 161

Chapter 6 Error Messages 165

Execution Errors 167
Instrument Errors 170
Self-Test Errors 172

Chapter 7 Plug-in Modules 173

N 2260A 40-Channel M UX M odule 176
N2261A 40-Channel GP Relay M odule 182
N2262A 4×8 2-Wire Matrix Switch Module 185
N 2263A 32-bit Digital I/O M odule 188
N 2264A Multifunction M odule 192
N 2265A Multifunction M odule 196
N 2266A 40-Channel M UX M odule 200
N2267A 8-Channel High Current GP Module 206
N2268A $50 \Omega 3.0 \mathrm{GHz}$ Dual 1-to-4 MUX M odule 210
N 2270A 10-Channel High Voltage MUX M odule 212
N 2272A 1 GHz RF 1-to-9 M UX Module 214
N2276A Dual 1-to-6(4) M icrowave MUX/Attenuator M odule 217
N2276B Microwave MUX/Attenuator Module 221
N2280A Quadruple 1-to-2 Optical Switch M odule 225
N2281A Dual 1-to-4 Optical Switch Module 226
N 2282A 1-to-8 Optical Switch M odule 228
44470A 10-Channel MUX M odule 230
44470D 20-Channel MUX M odule 233
44471A 10-Channel GP Relay M odule 236
44471D 20-Channel GP Relay Module 239
44472A Dual 4-Channel VHF Switch Module 242
44473A 4×4 2-Wire Matrix Switch Module 245
44474A 16-Bit Digital I/O Module 248
44475A Breadboard M odule 251
44476A Microwave Switch M odule 257
44476B Microwave Switch Module 260
44477A Form-C Relay Module 265
44478A/B 1.3 GHz Dual 4-to-1 MUX Modules 267
Protection Networks 272
Terminals and Connections Information 275

Chapter 8 Application Programs 289

Visual C++Example Program 291
Visual BASIC Example Program 293
VB.net Example Program 296
BASIC Example Program 298

Chapter 9 Specifications 299

3499A/B/C M ainframe 301
N2260A 40-Channel MUX M odule 303
N2261A 40-Channel GP Relay Module 305
N2262A 4×8 2-Wire M atrix Switch M odule 307
N2263A 32-bit Digital I/O Module 309
N2264A Multifunction Module 310
N2265A Multifunction Module 313
N2266A 40-Channel MUX M odule 315
N2267A 8-Channel High Current GP Module 317
N2268A 50Ω 3.0 GHz Dual 1-to-4 MUX M odule 319
N2270A 10-Channel High Voltage MUX M odule 321
N2272A 1 GHz RF 1-to-9 MUX Module 323
N2276A Dual 1-to-6(4) Microwave MUX/Attenuator M odule 325
N2276B Microwave MUX/Attenuator Module 325
N2280A Quadruple 1-to-2 Optical Switch M odule 326
N2281A Dual 1-to-4 Optical Switch M odule 327
N2282A 1-to-8 Optical Switch Module 328
44470A 10-Channel MUX M odule 329
44470D 20-Channel MUX Module 331
44471A 10-Channel GP Relay M odule 333
44471D 20-Channel GP Relay M odule 335
44472A Dual 4-Channel VHF Switch Module 337
44473A 4×4 2-Wire Matrix Switch M odule 339
44474A 16-Bit Digital I/O M odule 341
44475A Breadboard M odule 342
44476A Microwave Switch M odule 344
44476B Microwave Switch M odule 344
44477A Form-C Relay Module 345
44478A/B 1.3 GHz Dual 4-to-1 MUX M odules 347

Index 349

Quick Start

Quick Start

This chapter describes the procedure to install the plug-in modules into an Agilent 3499A/B/C mainframe and mount the mainframe onto a system rack. The basic operations of the Agilent 3499A/B/C Switch/ Control System is also described. The chapter contents include:

- To Prepare the Instrument for Use, on page 15
- To Install a Module in the 3499A/B/C, on page 17
- Basic Operation, on page 19
- To Rack Mount the 3499A/B/C, on page 23

To Prepare the Instrument for Use

1 Check the list of supplied items

Verify that you have received the following items with your Agilent 3499A/B/C mainframe:

- One power cord;
- This User's Manual;
- OneQuick ReferenceGuide;
- One Tie Down Clip 03499-21002 (for Agilent 3499B only);
- Any plug-in modules that you ordered are delivered in separate shipping containers.

2 Connect the power cord and turn on the instrument

1. Connect the 3499A/B/C to an AC power source with the supplied power cord.
2. Push the Power switch located on the lower left side of the front panel.
3. On power-up, every segment in the display will light up briefly, including all annunciators. Following this "starburst" display, the internal self-test will begin.
4. If the self-test passes ${ }^{1}$, the default system mode and the GPIB address are displayed, together with a "beep" sound. Then the display shows the instrument model number and the active slot (slot 0).
```
SCPI GPIB }
```

34990
${ }^{1}$ If the self-test failed, the failure will be displayed on the front panel. F or details of all self-test errors, refer to "Error Messages" starting on page 165.

Chapter 1 Quick Start
To Prepare the Instrument for Use

When shipped from the factory, the SCPI mode and the GPIB interface address of " 9 " are used. Slot 0 refers to the built-in controller board of the switch/control system.

If the Instrument Does Not Turn On

1. Verify that the power cord is firmly plugged into the power receptacle on the rear panel of the 3499A/B/C.
2. Make sure that the power source the 3499A/B/C is plugged into is energized.
3. Verify that the 3499A/B/C is turned on.

Note

If the 3499A/B/C DOES NOT turn on after you perform the above procedure, contact your nearest Agilent Service Center (see page 8).

Tolnstall a Module in the 3499A/B/C

The plug-in modules you ordered were not installed in the mainframe. The figure on page 18 shows how to install a plug-in module into the 3499B mainframe. Other mainframes use similar procedures.

WARNING Disconnect the power cord from the rear pand of the mainframeprior to installing or removing any modules.

Caution
Use anti-static procedures when configuring, installing or removing any plug-in modules. To prevent contamination to the modules that could degrade performance, handle the modules by the side edges or shields only. Do not touch the board surfaces or components.

E ach plug-in module may have terminal block(s) and/or the cables for wiring to external circuits. These terminations are al so shi pped separately.
For more details about terminal blocks, cables, and connections, see "Terminals and Connections Information" on page 275.

Module Removal

To remove a plug-in module from the Agilent 3499A/B/C mainframe, reverse the procedures shown on page 18.

STEP 1

1. Face the mainframe rear panel toward you.
2. Select a slot in which the module is to be installed.

STEP 3 (for modules with terminal blocks)

1. Wire the screw terminal block (module dependent, refer to chapter 7 for details).
2. Attach the screw terminal block to the plug-in module.

STEP 2

1. Hold the sides of the module, component side down, by the metal shields.
2. Insert the module into the slot guides and slide the module toward the front of the instrument.
3. Push firmly until the module "snaps" into place.
4. Push both plastic levers inward to lock the module.

STEP 4 (for modules with terminal blocks)

1. Push firmly until the terminal block "snaps" into place.
2. Secure the screw terminal block with the two screws (Torque <8 in-lbs).

Module installation

Basic Operation

An Agilent 3499A/B/C Switch/Control System can be easily operated from the front-panel, or programmed with SCPI commands over the remote interface.

The following sections are only intended to show the basic front-panel operation. F or detailed front-panel operation, refer to the "Front-Panel Operation" chapter on page 27. F or more information about programming the instrument, refer to the "Remote Interface Reference" chapter on page 113.

Channel Addressing

A channel refers to an individual relay on a switching module, or an individual bit/port on a digital I/O module. The channel address is in the form of snn, where s represents slot number and nn represents a channel number.

For all mainframes, slot 0 refers to the 3499 controller board. Valid slot numbers are:

3499A slots 0 through 5
3499B slots 0 through 2
3499C slots 0 through 9

The channel number, nn, is plug-in module dependent. F or additional information about channel numbers of individual plug-in modules, refer to the table beginning on page 70.

Chapter 1 Quick Start

Basic Operation

To Select a Slot and Channel

When the instrument is first turned on, the display shows the model number and the slot number of the controller board.

3499	0

Use the knob to select a channel on the active slot. F or example, with the display shown above, turning the knob to the right will select the first of the individual built-in digital I/O ports.

> DIN

090

The "DIN" indicates the port is set for a digital input operation. As the knob is turned, the additional ports are displayed followed by any installed plug-in modules.
If you have installed one or more plug-in modules, you can select the module by pressing the right arrow key. F or example, if an N2260A (40channel MUX module) is installed in slot 1, pressing the right arrow key will show the module name and slot number.
N2260A

$$
1
$$

Turning the knob will then step through the individual channels on that module.

| MUX | OPEN 100 |
| :--- | :--- | :--- |

To Open or Close a Channel

When a channel is selected, you can open or close the channel using the front panel keys. For example, with an N2260A 40-channel M UX installed in slot 1, select channel 00 as described on the previous page.

$$
\text { MUX } \quad \text { OPEN } 100
$$

Press the CLOSE key to close the channel.
MUX
CLOSED 100

Press the OPEN key to open the channel

MUX OPEN 100

In this manner, you can select and control as many channels as you need. The N2260A has 40 channels numbered 0 through 39 (in slot 1, 100 through 139). Y ou may also select additional plug-in modules and channels by turning the knob.

Chapter 1 Quick Start

Basic Operation

To Open All Channels on a Module

You can open individual channels on a module one at a time as described above. There are times, however, when it would be more expedi ent to open all channels on a module at once.

Use the arrow keys to select the module to work with. You cannot have an individual channel selected for this operation. For example, select the module in slot 1 (using the N2260A as an example) to show a display similar to this:

N2260A 1

Press and hold the card reset key. When you first press the key, the display shows:

HOLD TO RESET

When the card has been reset, the display briefly shows:
\square
RESET CARD
and then returns to:

$N 2260 A$	1

To Reset All Modules

You can reset all channels on all modules in the mainframe at once. Press the shift key and then press and hold the reset key. The display shows:

HOLD TO RESET

When the mainframe has been reset, the display will briefly show the reset and then return to the slot or channel display.

```
RESET . . .
```


To Rack M ount the 3499A/B/C

You can mount the Agilent 3499A/B/C on a standard 19-inch EIA rack cabinet with the optional rack-mounting kits. The instructions and mounting hardware are included with each rack-mounting kit.

Agilent 3499A

To rack mount a 3499A, the full-rack-width mainframe, order either:

- Rack-mount kit with handles, part number 5183-7170, or
- Rack-mount kit without handles, part number 5183-7171.

To Rack Mount an Agilent 3499A

Chapter 1 Quick Start
To Rack Mount the 3499A/B/C

Agilent 3499B

To rack mount a single 3499B, order either:

- Adapter kit, part number 5183-7172 (includes the flange and filler panel).

To Rack Mount a Single Agilent 3499B with Adapter kit 5183-7172
OR

- A Support Shelf, part number 5063-9255,
- A slide kit, part number 1494-0015,
- And a filler panel, part number 5002-3999.

To Rack Mount a Single Agilent 3499B on a support shelf

To rack mount two Agilent 3499B's side-by-side (or any System II instrument next to an Agilent 3499B), order:

- A Support Shelf, part number 5063-9255,
- And a slide kit, part number 1494-0015.

To Rack Mount Two Agilent 3499B’s Side-by-side

Agilent 3499C

To rack mount an Agilent 3499C, order either:

- Adapter kit without handles, part number 5063-9216, or
- Adapter kit with handles, part number 5063-9223.

To Rack Mount an Agilent 3499C

Filler Panels

Order filler panels to cover any unused slots in an Agilent 3499A/B/C.

- 1-slot filler panel, part number 03499-00023 (option FP1)
- 2-slot filler panel, part number 03499-00024 (option FP2)

2

Front-Panel Operation

Front-Panel Operation

The Agilent 3499A/B/C mainframes all operate the same from the frontpanel. This chapter does not give a detailed description of every possible front-panel operation. It does, however, give you a good overview of the front-panel menus and front-panel keys. See the "F eatures and Functions" chapter on page 77 for additional discussions of the instrument's capabilities and operation. This chapter contents include:

- To Power On the Instrument, on page 29
- ToMonitor a Channel or a Slot, on page 29
- To Use a Digital I/O Port, on page 31
- To View Instrument Errors, on page 36
- Scanning Operation, on page 38
- To Pair Two M odules Together, on page 41
- To Configure for External Trigger, on page 42
- To Configure the Power-on State on page 44
- To Configure the Remote Interface, on page 46
- To Perform a Self-test, on page 51
- To Query the Firmware Revision, on page 52
- To Query the Serial Number, on page 53
- Local/Remote Control, on page 54

The following conventions are used for the front-panel operation.

- All keys on the front-panel keyboard are expressed in bold font and normally associated with a "press". F or example, press Mon.
- All the front panel display annunciators are expressed in bold font followed by an "annunciator". For example, MON annunciator.
- The information shown on the front panel display is enclosed within a pair of quotation marks.

To Power On the Instrument

To power on the instrument, press the power switch on the front panel. If the instrument is powered up for the first time, the instrument will use the factory default settings as shown on page 74. Otherwise, the instrument will power on to the state specified. Refer to "To Configure the Power-on State", on page 44 for more details.

To Monitor a Channel or a Slot

You can continuously monitor the current status of a particular switching channel, a digital I/O port, or an entire plug-in module. M onitoring from the front panel is especially useful when developing and debugging remote interface commands.

Mon

Enter

1. Press the monitor key, the MON annunciator lights up to indicate the instrument is in the monitoring state.
2. Select the slot or the channel/port to be monitored. The displayed information depends on the selected module type. Typical displays are shown in the table on page 81.
3. If only part of the channel status on the module can be displayed at one time, press E nter to display the next part.

For multiplexer modules and GP Relay modules, 10 channels can be displayed at one time; for matrix modules, one Row or one Column can be displayed at one time; for digital I/O modules, two 8-bit ports can be displayed at one time. F or multifunction modules, the first function on the module is displayed, then the next.
4. Press the monitor key again to end monitoring (the MON annunciator turns off).

The built-in digital I/O bits/port (on the controller module) can be monitored either individually as bit channels (numbered 091 through 094) or as a 4-bit port (numbered 090). However, the individual bit channels on a digital I/O or multifunction module (with a DIO function) cannot be monitored.

To Use a Digital I/O Port

You can work with a digital I/O module as a port (all eight bits) or as individual bits.

Reading a Digital I/O Port

You can read data from the built-in 4-bit digital I/O port, or any one of the 8-bit ports on a digital I/O or multifunction module (with a DIO function). Y ou can read the entire port (all bits) when you select the slot (for example, the built-in port is channel 090). Alternately, you can read an individual bit by selecting the channel (for example the first bit in the built-in port is channel 091).

Perform the following procedure to read from a port:

1. Select a digital I/O port. Use the knob to select the slot and channel number. The channel number is in the form of snn, where s is the slot number and $n n$ is the channel number.
2. Read the data read from the selected port. For example, the display below shows the data read from port 401.

| DIN 255401 Decimal format
 (default)
 DIN 11111111 401 Binary format |
| :--- | :--- | :--- |

The data display format of individual 8-bit ports can be specified either in binary or decimal formats (as described on page 34). Once specified, the format applies to all input and output operations on the same port.

Chapter 2 Front-Panel Operation

To Use a Digital I/O Port

Writing to a Digital I/O Port

You can write data to the built-in digital I/O port (numbered 090) or to one of the built-in digital I/O port bits (numbered 091 through 094), or any one of the 8-bit ports on a digital I/O or multifunction module (with a DIO function). To write to a port:

1. Select a digital I/O port. Use the knob to select the slot and channel number. The channel number is in the form of snn, where s is the slot number and $n n$ is the channel number. In the display, "DIN" indicates that the last operation on the port was a READ, and "DOUT", a WRITE.
DIN 401
2. Press the Write key. "DOUT" is displayed to indicate the port is now an output port. The current port value is displayed.

DOUT	255401

3. E dit the value. Use the arrow keys to select the to-be-edited bit (the digit to be edited is set to half bright in the display).

Turn the knob to modify the value. Use the arrow keys to select the next digit and the knob to modify its value.

$$
\text { DOUT } \quad 254401
$$

4. When the value is the one desired, press Enter to output the data to the selected port.
5. Press Write again to cancel the current write operation.

Note

Data display format of individual 8-bit ports can be specified either in binary or decimal values (refer to the procedure on page 34). Once specified, the format applies to all input and output operations on the same port.

To Configure a Digital I/O Module

Digital I/O modules can be configured for handshake modes and control line, flag line, and I/O line polarity. U se the Mode menu to configure digital I/O parameters. See "Digital I/O Operation" on page 95 for detailed descriptions of the operating modes. Only plug-in modules can be configured this way, the built-in digital I/O port (control module) can only be configured at the port level (see page 34).
The following procedure configures a plug-in digital I/O module to use a two line digital handshake mode (mode 5) for data transfers.

1. Select the slot in which a digital I/O or multifunction module is installed. The channel number is in the form of snn, wheres is the slot number and $n n$ is the channel number.
N2263A 4
2. Press the Mode key. The CONFIG annunciator lights up in the display and the first-level menu is shown.

> CONFIG DIO 4
3. Press Enter to begin the configuration. The display shows the second-level menu choice.

$$
\text { MODE } 1
$$ 4

4. Turn the knob until the desired flow control mode (i.e., MODE 5) is displayed. The displayed mode is half-bright.

$$
\text { MODE } 5
$$

Chapter 2 Front-Panel Operation

To Use a Digital I/O Port

5. Press Enter to select the new mode. The display changes to show the next menu level.
```
CONT POL POS
4
```

6. You may change other configuration parameters as desired using the same procedure. When all desired configurations have been made, press the Mode key to exit the configuration menu. The CONFIG annunciator turns off.

To Configure a DIO Port

You can configure an individual digital I/O port to change the data polarity and the display format. The following procedure changes the built-in digital I/O port to display in binary number format.

1. Select a digital I/O port (i.e., port 090). The channel number is in the form of snn, where s is the slot number and $n n$ is the channel number.
DIN 090
2. Press the Mode key. The CONFIG annunciator lights up in the display. The first level menu is shown:

$$
\text { DATA POLARITY } 090
$$

3. Turn the knob to select the second menu level

$$
\text { DISP FORMAT } 090
$$

4. Press Enter to select the format parameter.

$$
D E C I M A L
$$090

5. Turn the knob until the desired data display format (i.e., BINARY) is displayed.

BINARY
090
6. Press E nter to make the change and return to the first level of the Mode menu.

DISP FORMAT 401
7. Press Mode again to exit the current configuration, the CONFIG annunciator turns off.

Note

Once you have selected the data display format for a port, it applies to both input and output operations on that port.

Chapter 2 Front-Panel Operation
To View Instrument Errors

To View Instrument Errors

You can view errors from the front panel. This feature is especially useful when developing remote instrument control. If an error occurs, the ERROR annunciator in the display will light. Errors are stored in the error queue in the order they occur. Y ou read the errors in the same order. After all errors have been read, the queue is empty and the ERROR annunciator turns off. To view instrument errors:

1. Press the View key. The VIE W annunciator lights up and the display shows the first menu level.
ERROR 0
2. Press Enter to view the first error.
a. If no error is in the error queue (the ERROR annunciator is off), the display shows "NO ERROR" and then automatically returns to the first level of the View menu.
NO ERROR 0

ERROR

0
b. If there are errors (the ERROR annunciator is on), the first error in the error queue is displayed.

$$
01: E R R-109
$$

Press the right arrow key to scroll the display to show the entire error message.

> MISSING PARAMETER
3. Turn the knob to view other errors in the error queue (if any).
4. Press Enter to return to the first level of the View menu, the ERROR annunciator turns off.

View

5. Press View again to exit the View menu operation, the VIE W annunciator turns off.

Note
All errors are cleared, and the ERROR annunciator turns off, once the error queue is viewed. See the "Error Messages" chapter on page 165 for a complete list of error messages.

Chapter 2 Front-Panel Operation

Scanning Operation

The instrument allows you to combine an external measurement device such as a Digital Multimeter (DMM) with multiplexer channels to create a scan. During a scan, the instrument closes the configured multiplexer channels one at a time to allow a measurement to be made on that channel.
Before initiating a scan, a scan list must be set up. You can also specify an arm source, a trigger source, and the number of sweeps (a sweep is one pass through the scan list) to control the scan process. All these can be done from the S.List menu. The procedure in this chapter describes a simple scan from the front panel. For more information about scanning and using the parameters to control a scan, see page 85 .

To Create a Scan List

S.List

1. Press the S.List key to enter the scan list menu. The CONFIG annunciator lights up and the first level of the menu is displayed.

$$
\text { ADD TO SCAN } 101
$$

2. Press Enter to begin the channel selection.

$$
\text { SELECT } 101
$$

3. Turn the knob to select the first channel for the list (e.g., 103).

$$
\text { SELECT } 103
$$

4. Press Enter to add the channel into the scan list. The starburst character lights in the display to indicate the channel is now a part of the scan list.
```
SELECT * }10
```

5. Repeat step 3 and 4 to add additional channels to the list.
6. When the desired channels have been added, press the S.List key again to return to the first level of the menu.
```
ADD TO SCAN 107
```

7. Press S.List again to exit the menu. TheCONFIG annunciator turns off.

To Perform Scanning

After the scan configuration is complete, the actual scan can be performed.

1. Press the Step key to close the first channel in the scan list.
2. Press the Step key again to open the first channel and close the next channel in the list.

This procedure shows a simple way to scan, one channel at a time for each press of a front panel key. Y ou can also press the Scan key to scan all channels in the list according to the various scan parameters set. In the default parameter state, pressing the Scan key will cause all the channels in the list to cycle through at the maximum possible speed. While this occurs, the SCAN annunciator is lighted. For details about the scan parameters, see page 85.

To Clear a Scan List

You can clear a scan list once it has been configured.

1. Press the Shift key and then the S.List key. The display will briefly show:

$$
\text { CLR SCAN LIST } 101
$$

and then return to normal operation.

Chapter 2 Front-Panel Operation

 Scanning Operation
To View a Scan List

You can view which channels are included in a scan list. This example assumes that channels 103 through 107 are included in the scan list.

1. Press the View key. The VIE W annunciator lights up and the display shows the first level menu.

ERROR

 1012. Turn the knob until "SCAN LIST" is displayed.

SCAN LIST	101

3. Press Enter. The first channel in the scan list is displayed on the channel area.

$$
001 \text { OF } 005
$$

Turn the knob to view other channels in the scan list.

$$
002 \text { OF } 005
$$ 104

4. Press Enter to return to the first level of the View menu.

SCAN LIST 107
5. Press View again to exit the View menu. The VIE W annunciator turns off.

To Pair Two Modules Together

You can pair two modules together so that they operate as a single unit.

1. Press the Menu key. The CONFIG annunciator lights up and "CARD PAIR" is displayed.
2. Press Enter.

When "FIRST SLOT x" is displayed, turn the knob to select the first slot to be paired (i.e., Slot 2).

FIRST SLOT 2

3. Press Enter.

When "SECOND SLOT x" is displayed, turn the knob to select the second slot to be paired (i.e., Slot 5) .

SECOND SLOT 5

Enter

4. Press Enter to return to the first level of the Menu menu.

CARD PAIR
5. Press Menu again to exit the Menu menu. The CONFIG annunciator turns off.

Chapter 2 Front-Panel Operation
To Configure for External Trigger

To Configure for External Trigger

You can use one of two modules for an external trigger. The built-in rear panel TRIG IN and TRIG OUT pair (on the control module) or the EI (External Increment) and the CC (Channel Closed) pair on a 44474A module. Only one pair can be used at a time. You can specify which pair to use and whether a trigger out pulse is sent out when a relay is closed during scanning operations. Refer to "Scanning" on page 85 for more details.

1. Press the Menu key. The CONFIG annunciator lights up and the display shows the first level menu.
CARD PAIR
2. Turn the knob to show the second menu item, "CONF EXT TRIG".

> CONF EXT TRIG
3. Press Enter. The display shows the next level menu.

TRIG SLOTO

4. Turn the knob to select the sl ot for the external trigger. Slot 0 (control module) is the built-in external trigger (available at the rear panel mini DIN connector, see page 7). If a 44474A is not installed, only slot 0 will be shown. Press Enter. The display shows the current setting for the external trigger.

DISABLE

5. Turn the knob to show the alternate choice.

ENABLE

6. Press E nter to accept the choice and return to the first level menu.

CONF EXT TRIG

Menu

7. Press the Menu key to exit the menu. The CONFIG annunciator turns off.

Chapter 2 Front-Panel Operation

To Configure the Power-on State

To Configure the Power-on State

Firmware Rev 4.0 ONLY. To read your firmware version, see the procedure on page 52. For more information about firmware revisions, see "Firmware and Control M odule Description" on page 59.

An instrument with Firmware REV 4.0 or later can be set to power on to the reset state (see "F actory Default and Reset States" on page 74) or to a state previously stored in a specified memory location. The instrument will return to the specified state the next time it is turned on.

1. Press the Menu key. The CONFIG annunciator lights up and the display shows the first menu level.

> CARD PAIR
2. Turn the knob until "POWER ON SET" is displayed.

POWER ON SET

3. Press Enter to show the second level menu.

PWR ON RESET

4. To set the instrument power-on to the reset state, pressE nter. The instrument will return to the first level menu.

Alternately, to set the instrument power-on to a stored state: Turn the knob until "USER SET UP" is displayed.

```
USER SET UP
```

5. Press Enter to select the stored state to use.

POWER ON 05

Enter

Menu

Note
6. Turn the knob to select the desired memory location (i.e., 08).

POWER ON 08

7. Press E nter to accept the stored state and return to the first level menu. More information about storing states is given on page 106 of this manual.

POWER ON SET

8. Press the Menu key again to exit the Menu menu. The CONFIG annunciator turns off.

If the instrument is set to power on to a previously stored setup that is no longer valid, it will automatically power on to the reset state and "RECALL FAILED" will be displayed.

Chapter 2 Front-Panel Operation

To Configure the Remote Interface

To Configure the Remote Interface

Note

The instrument can communicate with a computer over GPIB or RS-232 interface. Only one interface can be used at a time. When shipped from the factory, the GPIB interface is selected and its address is set to " 9 ".

The RS-232 interface can be configured and used only in SCPI mode.

GPIB Interface

Each device on the GPIB interface must have a unique address.

- When shipped from the factory, the GPIB interface is selected and its address is set to " 9 ". The GPIB address of the instrument can be set to any value between 0 and 30 .
- The GPIB address is stored in non-volatile memory, and does not change when the instrument is turned off or reset.
- Switching between SCPI mode and 3488A mode causes the 3499A/B/C to select the GPIB interface and its address setting.
To set the GPIB interface:

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

> CARD PAIR
2. Turn the knob to select "INTERFACE" in the menu.

> INTERFACE
3. Press Enter to show the second level menu The active interface is shown. If necessary, turn the knob until "GPIB/488" is displayed.

GPIB/488
4. Press Enter to select the interface and show the first parameter.

Enter

ADDRESS 09
5. Turn the knob to set GPIB address (i.e., 07). Valid addresses range from 00 to 30 .

ADDRESS 07

6. Press E nter to show the second parameter.

SRQ ON

7. Press Enter to enable the instrument to assert the SRQ line when powered up. If the computer is so configured, this can be used to interrupt the system computer.

To disable this feature, turn the knob to select "SRQ OFF" and press Enter. The instrument returns to the first level of the menu.
8. Press Menu again to exit the menu. The CONFIG annunciator turns off.

Chapter 2 Front-Panel Operation
To Configure the Remote Interface

RS-232 Interface

RS-232 interface can be selected and its baud rate, parity, and flow control mode can be configured from the front-panel.

- Baud Rate: The baud rate can be set to one of the following: 2400, $4800,9600,19200,38400$, or 57600 . The factory default setting is 9600.
- Parity and Data Bits: The parity and data bits can be set to one of the following: None, 8 bits; Even, 7 bits; or Odd, 7 bits. The factory default setting is None, 8 bits.
- Flow Control: The flow control can be set to one of the following: N one (factory default setting), XON/XOFF, DTR/DSR, RTS/CTS.
- None: In this mode, data is sent and received over the interface without any flow control. When using this method, use a slower baud rate (<9600 baud) and avoid sending more than 128 characters without stopping or reading a response.
- XON/XOFF: This mode uses special characters embedded in the data stream to control the flow. If the instrument is addressed to send data, it continues sending data until the "XOFF" (13_{h}) character is received. When the "XON" character (11_{h}) is received, the instrument resumes sending data.
- DTR/DSR: In this mode, the instrument monitors the state of the DSR (data set ready) line on the RS-232 connector. When the line goes true, the instrument sends data over the interface. When the line goes false, the instrument stops sending information (typically within six characters). The instrument sets the DTR line false when the input buffer is almost full (approximately 100 characters) and releases the line when space is available again.
- RTS/CTS: This mode operates the same as the DTR/DSR mode but uses the RTS (request to send) and CTS (clear to send) lines on the RS-232 connector instead. When the CTS line goes true, the instrument sends data over the interface. When the line goes false, the instrument stops sending information (typically within six characters). The instrument sets the RTS line false when the input buffer is almost full (approximately 100 characters) and releases the line when space is available again.
- Changing the instrument system mode (SCPI or 3488) causes the instrument to select the GPIB interface and its address setting.

To set the RS-232 interface:

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

> CARD PAIR
2. Turn the knob to select "INTERFACE" in the menu.

INTERFACE
3. Press Enter to show the second level menu The active interface is shown. If necessary, turn the knob until "RS-232" is displayed.

RS-232
4. Press Enter to select the interface and show the first parameter. 9600 BAUD
5. Turn the knob until the desired baud rate is displayed.

$$
19200 B A U D
$$

6. Press E nter to select the baud rate and show the second parameter.

NONE; 8 BITS

Chapter 2 Front-Panel Operation
To Configure the Remote Interface
7. Turn the knob until the desired parity and data bits (default: NONE, 8 BITS) is displayed.

EVEN;7 BITS

Enter

8. Press Enter to select the parity and data bits and show the fourth parameter.

FLOW NONE

9. Turn the knob until the desired mode is displayed.

> FLOW RTS/CTS
10. Press Enter to select the parity and data bits and return to the first level of the Menu menu.
INTERFACE
11. Press Menu again to exit the menu. TheCONFIG annunciator turns off.

To Perform a Self-test

The self-test feature of the instrument provides you with a method of verifying proper instrument operation.

Menu

Enter

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

> CARD PAIR
2. Turn the knob to select "SELFTEST".

SELFTEST
3. Press Enter. The self test will begin. The display will briefly show a "starburst" pattern (all display segments lit). F ollowing the pattern, the display indicates:

TEST. . .

while the internal tests are being performed. The self-test takes several seconds to complete.

If the self-test is successful, "PASSED" will be displayed. Otherwise, the reason of the failure will be displayed. F or details on self-test failures, refer to "Self-Test Errors" on page 172.

PASSED
4. Press Enter to return to the first level of the menu.

SELFTEST
5. Press Menu again to exit the Menu menu, the CONFIG annunciator turns off.

Chapter 2 Front-Panel Operation
To Query the Firmware Revision

To Query the Firmware Revision

Perform the fol lowing procedure to query the 3499A/B/C firmware and revision. For a description of the firmware and hardware revisions, see "Firmware and Control M odule Description" on page 59.

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.
CARD PAIR
2. Turn the knob to select "REVISION INFO".

> REVISION INFO
3. Press E nter. The system firmware revision number will be displayed.

REVISION 4.02 .0
4. Press Enter to return to the first level of the Menu menu.

REVISION INFO
5. Press Menu again to exit the Menu menu, theCONFIG annunciator turns off.

Chapter 2 Front-Panel Operation

 To Query the Serial Number
To Query the Serial Number

Perform the following procedure to query the 3499A/B/C serial number.

1. Press the Menu key. The CONFIG annunciator lights up and the first level menu is shown.

CARD PAIR

1. Turn the knob to select "SERIAL NO".

SERIAL NO
2. Press Enter. The Agilent 3499A/B/C serial number is displayed.

MY12345678

Enter

3. Press Enter again to return to the first level of the Menu menu.

SERIAL NO

Menu

4. Press Menu again to exit the Menu menu, the CONFIG annunciator turns off.

Chapter 2 Front-Panel Operation

Local/Remote Control

Local/Remote Control

The instrument operates in two data entry modes, local and remote. In local mode, all keys on the front panel are fully functional. In remote mode, some front panel keys are locked (exception are: Local, Mon, View, Enter, the arrow keys, and the knob).

The instrument will enter the remote state upon receipt of any command over the remote interface. The RMT annunciator lights.

You can regain control of the front panel keys when the instrument is in remote by pressing the Shift (Local) key. The RMT annunciator turns off and the instrument return to local mode.

If the front panel keys are locked through either the SYSTem:RWLock command on the RS-232 interface or a LOCAL LOCKOUT command on the GPIB interface, the local key will not function. Y ou can restore the front panel operation by cycling power the instrument or by sending a SYSTem:LOCal command on theRS-232 interface, or a LOCAL command on the GPIB interface.

3

System Overview

System Overview

An Agilent 3499A/B/C Switch/Control System is composed of a mainframe and a set of Plug-in modules. This chapter provides a typical configuration of a test system using the 3499A/B/C for switching and control, followed by a description of the three mainframes and all the Plug-in modules. The following sections are included in this chapter:

- Agilent 3499A/B/C Switch/Control System, on page 57
- Mainframes Overview, on page 58
- Firmware and Control Module Description, on page 59
- Plug-in Modules Overview, on page 61
- Channel and Slot Addressing, on page 70
- Factory Default and Reset States, on page 74

Agilent 3499A/B/C Switch/Control System

The Agilent 3499A/B/C Switch/Control System provides high density and high speed switching for routing test signals to and from your DUTs (devices under test) and test instruments such as external DMMs, scopes, counters, power supplies, etc. Whether you are involved in a large production test system or a small R\&D bench top system, the Agilent 3499A/B/C provides an ideal combination of price/performance solution. With a wide variety of available plug-in modules, you can configure your test system much more easily and flexibly. The figure below shows the typical configuration of a test system.

A Typical Test System

Chapter 3 System Overview

Mainframes Overview

Mainframes Overview

Three mainframes are available:

	Slots Available	Rack Width
3499A	5	full width
3499B	2	half width
3499C	9^{1}	full width

[^0]All mainframes can be either operated from the front-panel or programed over a remote interface (GPIB or RS-232).

The mainframes can be operated in either of two system modes: SCPI mode or 3488A mode. The SCPI mode allows the full realization of performance potentials and advanced features, such as parallel operation of multiple relays on multiple modules. The 3488A mode is included for backward compatibility with the legacy Agilent 3488A system. This manual documents the SCPI mode of operation.

For information about the 3488 programming mode please visit www.agilent.com.

Firmware and Control Module Description

The Agilent 3499A/B/C and this manual support two versions of the Agilent 3499A/B/C control module and four versions of firmware.

Firmware revisions and control module versions can be queried either by front-panel operation or using the remote interface. See page 52 for a procedure to read the revision from the front-panel or page 153 for remote interface operation.

From the front-panel:

Control Module Revision Firmware Revision Typical Display
 $1.0 \quad 1.0 \quad$ REVISION 1.0
 $1.0 \quad 2.0$
 $1.0 \quad 3.0$
 $2.0 \quad 4.0$
 REVISION 2.0
 REVISION 3.0
 REV 4.02 .0

From the remote interface, in response to the *IDN ? query, one of two typical strings is returned:
"Agilent Technologies, 3499, cnxxxxxx, 3.0"
"Agilent Technologies, 3499, myxxxxxx, 4.0 2.0"
In these strings, cnxxxxxx or myxxxxxx is the instrument serial number. Note that the control module revision is not returned for revision 1.0 control modules.

The table on the next page lists the differences between firmware and control module revisions.

Chapter 3 System Overview

Firmware and Control Module Description
\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Firmware } \\
\text { Version }\end{array} & \begin{array}{l}\text { Control } \\
\text { Module } \\
\text { Version }\end{array} & \begin{array}{l}\text { State } \\
\text { Storage }\end{array} & \begin{array}{l}\text { Plug-in module } \\
\text { Support }\end{array} & \begin{array}{l}\text { Programming } \\
\text { Modes }\end{array} & \begin{array}{l}\text { Firmware } \\
\text { Upgrade } \\
\text { Needed? }\end{array} \\
\hline 1.0 & 1.0 & \begin{array}{l}\text { Stored setups } \\
\text { are cleared if } \\
\text { power is } \\
\text { cycled. }\end{array} & \begin{array}{l}\text { Must upgrade } \\
\text { hardware and } \\
\text { firmware. }\end{array} & \text { Not Applicable } & \text { YES } \\
\hline 2.0 & 1.0 & \begin{array}{l}\text { Stored setups } \\
\text { are cleared if } \\
\text { power is } \\
\text { cycled. }\end{array} & \begin{array}{l}\text { Supports all } \\
\text { modules except: } \\
\text { N2272A } \\
\text { N2276A/B } \\
\text { N2282A }\end{array} & \begin{array}{l}\text { Firmware } \\
\text { Version 2.0 } \\
\text { allows } \\
\text { programming in } \\
\text { both SCPI } \\
\text { Mode and } \\
3488 A \text { Mode. }\end{array} & \begin{array}{l}\text { Upgrade to } \\
\text { Firmware } \\
\text { ONLY if using }\end{array}
$$

N2272A,

N2276A/B, or

N2282A.\end{array}\right]\)| 1.0 |
| :--- |

1 Upgrading to firmware revision 4.0 requires the control module be upgraded to revision 2.0. Control module revision 1.0 does not support firmware revision 4.0.

Plug-in Modules Overview

The Agilent 3499A/B/C mainframes support multiple Plug-in modules, including all the existing 3488A modules (4447XX modules), as well as several new ones (N22XXX modules). Based on their functions, the modules can be divided into five classes:

- Multiplexer (MUX) modules
- General Purpose Relay (GP) modules
- Matrix modules
- Digital I/O (DIO) modules
- Multifunction modules
- Optical Modules

Note Refer to the "Plug-in Modules" chapter on page 173 for the details of the individual Plug-in modules.

MUX Modules

A MUX (multiplexer) module switches one signal to multiple DUTs (devices under test), or multiple signals to one device, one at a time. Example applications include capacitor leakage, connector/switch contact, and insulation resistance test systems. To expand switching capacity or build special configurations, the multiplexer switching modules can also be used with matrix or other switching modules. The figure below shows a simple 1×4 Multiplexer.

Simple Multiplexer Switching

Chapter 3 System Overview

Plug-in Modules Overview

Multiplexers are available in several types:

- One-Wire (Single-Ended) Multiplexer for common LO measurements
- Two-WireMultipl exer for floating measurements
- Four-WireMultiplexer for resistance and RTD measurements
- Very High Frequency (VHF) / Microwave Multiplexer for switching frequencies up to microwave (26.5 GHz).

The table below lists the available MUX modules.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2260A	40-Channel MUX Module	1	Latching	Primarily a 40-channel 2-wire multiplexer, switches both HI and LO inputs (200 V, 1 A) with DPST relays. It can be configured as an 80-channel 1- wire, two independent 20- channel 2-wire or a 20-channel 4-wire MUX module.
N2266A	40-Channel MUX Module	1	Reed non- latching	Primarily a 40-channel 2-wire multiplexer. In SCPI mode it can be configured as an 80-channel 1-wire, two independent 20- channel 2-wire or a 20-channel 4-wire MUX module.
N2268A	50Л 3.0 GHz Dual 4-to-1 MUX Module	1	Latching	Consists of two independent 1- to-4 MUX switches which can switch up to 30VDC or peak AC at frequencies from DC to 3.0 GHz.
N2270A	10-Channel High Voltage MUX Module	2	Non- latching	10-channel 2-wire High Voltage MUX module with maximum switching voltage 1000V peak and maximum switching power 10W.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2272A	1 GHz RF 1-to-9 MUX Module	1	Latching	1 GHz RF 1-to-9 MUX module which can be used in RF testing and measuring.
N2276A/B	Dual 1-to-6(4) Microwave MUX/ Attenuator Module	3	Non- latching	3-slot width Dual 1-to-6(4) Microwave MUX/Attenuator module with optional Microwave switch blocks and programmable attenuator blocks.
44470A/D	10/20-Channel MUX Module	1	Latching	The 10/20 DPST (Double-pole Single-throw) relays switch both HI and LO inputs up to250V, 2A with low differential offsets for accurate measurements.
44472 A	Dual 4-Channel VHF Switch Module	1	Latching	The two independent groups of bidirectional 1x4 switches with 50Ω characteristic impedance can be used for signals from DC to 300 MHz.
44478 A/B	$50 \Omega / 75 \Omega$ 1.3 GHz Multiplexer	1	Latching	The two independent groups of bidirectional 1x4 switches with $50 \Omega / 75 \Omega$ characteristic impedance can be used for signals from DC to 1.3 GHz.

Chapter 3 System Overview

Plug-in Modules Overview

GP Modules

The GP (General Purpose) relay modules often consist of independent latching or non-latching relays. They are useful for creating additional isolation between circuits, providing safety interlocks, actuating other relays or circuits, or building special topologies such as binary ladders and tree structures. A simple 4-channel SPST (Single-pole Single-throw) GP switch is shown below.

A Simple General Purpose Switch

The table below lists the available GP relay modules.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2261A	40-ChannelGP Relay Module	1	Latching	The 40 independent SPST relays provide quality connections for low level signals. Can also switch signals up to 200V, 1A.
N2267A	8-Channel High Current GP Module	1	Non- latching	An 8-channel High Current GP module which can switch up to 8A 250VAC or 5 A 30VDC, with decreasing current to 1A at 125VDC.
44471A	10-ChannelGP Relay Module	1	Latching	The 10 independent SPST (Single- pole Single-throw) relays provide quality connections for low level signals. Can also switch signals up to 250V, 2A.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
44471D	20-ChannelGP Relay Module	1	Latching	The 20 independent SPST (Single- pole Single-throw) relays provide quality connections for low level signals. Can also switch signals up to 250V, 1A.
44475A	Breadboard Module	1	NA	Use the breadboard for custom circuits and special purpose functions in your test system.
44476A	3-Channel 18 GHz Switch Module	1	Latching	The 3 independent 50S SPDT (Single- pole Double-throw) coaxial switches with SMA connectors provide high isolation, low insertion loss, and low VSWR for switching signals up to 18 GHz.
44476B	2-Channel Microwave Switch Module	1	NA	Similar to the 44476A but does not have the coaxial switches installed. A variety of coaxial switches can be mounted onto the module to provide 3-, 4-, or 5-port switching up to 26.5 GHz.
44477A	7-Channel Form-C Relay Module	1	Latching	7 independent, break-before-make, SPDT Form-C relays for general purpose switching and control of external devices up to 250V, 2A.

Chapter 3 System Overview

Plug-in Modules Overview

Matrix Modules

A matrix switch is the most versatile type of system switching. Any input can be connected to any output, individually or in combination. This helps minimize the need for complex wiring, and can simplify the DUT interface. In addition, a matrix module can be used in conjunction with other modules to provide a wide variety of switching combinations. A matrix is arranged in rows and columns and a simple 4×4 matrix switch is shown below.

The table below lists the available matrix modules.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2262A	4×8 Matrix Module	1	Latching	Each crosspoint or node of the 4 x 8 matrix module uses a DPST (Double- pole Single-throw) relay to switch two wires (Hi \& Lo) for signals up to 200V, $1 \mathrm{A}$.
44473 A	4×4 Matrix Module	1	Latching	Each crosspoint or node of the 4 x 4 matrix module uses a DPST (Double- pole Single-throw) relay to switch two wires (Hi \& Lo) for signals up to 250V, 2A.

Digital I/O Modules

The digital I/O modules provide high-density digital input/output capabilities in an easy-to-control form. The independent TTL-compatible inputs and outputs make it well-suited for monitoring and controlling devices compactly and cost-effectively. Typically, the digital outputs are used to provide drive for relatively high current devices such as solenoids, relays and small motors. The digital inputs are used to monitor devices such as micro-switches. A simplified schematic of a single digital input and output line is shown below.

A Simple Digital I/O Circuit
The table bel ow lists the available digital I/O modules.

Model Number	Module Name	Mainframe Slots Required	Descriptions
N2263A	32-Bit Digital I/O Module	1	The module offers 32-bidirectional I/O lines and three handshake lines for sensing and control of external devices up to 42 V, 600 mA. All lines are TTL-compatible.
44474A	16 -Bit Digital I/O Module	1	The module offers 16-bidirectional I/O lines and four handshake lines for sensing and control of external devices up to 30 V, 125 mA. All lines are TTL-compatible.

Chapter 3 System Overview
Plug-in Modules Overview

Multifunction Modules

A multifunction module combines two or more functions such as MUX, GP, Matrix, Digital I/O or DAC onto a single module, making it possible to implement a complicated switching application with fewer modules. Therefore, the cost is reduced by minimizing the number of mainframes and modules required.

Each separate function on a multifunction module can be operated independently. F or example, an Agilent N2265A can be used as both a 4×4 matrix module and a 16-bit digital I/O module.

The table below lists the available multifunction modules.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2264A	12-Channel GP + 3-Channel High- current GP + 16-Bit Digital I/O Module	1	Non- latching	The module provides 12-channel SPST (Single-pole Single-throw) GP relays for signals up to 200 V, 1 A, 3-channel high-current GP relays for signals up to 125V, 5 A, and 16-bit digital I/O for sensing and control of external devices up to 42 V, 600 mA.
N2265A	4×4 Matrix + 16-Bit Digital I/O Module	1	Latching	The module provides 4 x 4 2-wire matrix for signals up to 200V, 1A, and 16-bit digital I/O for sensing and control of external devices up to 42 V, 600 mA.

Optical Modules

The Agilent N2280A, N2281A and N2282A are optical switch modules.
The table bel ow lists the information about these three optical modules.

Model Number	Module Name	Mainframe Slots Required	Relay Type	Description
N2280A	Optical Switch Quad 1-to- 2 MUX Module	2	Non- latching	Four 1-to-2 Optical Switches
N2281A	Optical Switch Dual 1-to- 4 MUX Module	2	Non- latching	Two 1-to-4 Optical Switches
N2282A	Optical Switch 1-to-8 MUX Module	2	Latching	One 1-to-8 Optical Switch

Chapter 3 System Overview
Channel and Slot Addressing

Channel and Slot Addressing

A channel refers to an individual relay on a switching module, or an individual bit/port on a digital I/O module. The channel address is in the form of snn, where s represents slot number and nn represents a channel number.

For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:

3499A	slots 0 through 5
3499B	slots 0 through 2
3499C	slots 0 through 9

The channel number, nn, is plug-in module dependent. Detailed information about channel numbers of individual plug-in modules is given bel ow and on the following pages.

Plug-in Module	Channel Addressing (snn) $\boldsymbol{s}=$ Slot Number; $n \boldsymbol{n}=$ Channel Number
$\begin{aligned} & \text { N2260A } \\ & \text { 40-Channel MUX Module } \end{aligned}$	1-Wire Mode: s00, s01... s78, s79b 2-Wire Mode: s00, s01...s38, s39 Dual 2-Wire Mode: s00, s01...s38, s39 4-Wire Mode: s00, s01...s18, s19c
N2261A 40-Channel GP Relay Module	s00, s01, s02, s03... s37, s38, s39
N2262A 4X8 Matrix Module	Row 0, 1, 2, 3; Column 0, 1, 2, 3... 6, 7 (s00, s01, s02... s07; s10, s11, s12... s17; s20, s21, s22...s27; s30, s31, s32...s37)

a. The N2260A and N2266A can be used as an 80-channel 1-wire MUX module, a 40-channel 2-wire MUX module, two 20-channel 2 -wire MUX modules, or a 20-channel 4 -wire MUX module.
b. The Low (L) terminals of the 402 -wire channels form the first 401 -wire channels (Channels 00-39), and the High (H) terminals of the 402 -wire channels form the second 40 1-wire channels (Channels 40-79).
c. The first channels ($\mathrm{CHOO} \& \mathrm{CH} 20$) of either banks (BANK 0 and BANK 1) form Channel 00, the second channels (CH01 \& CH21) of either banks form Channel 01, and so on.
d. A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address s23 means row 2, column 3 in Slot s.

Plug-in Module	Channel Addressing (snn) $\boldsymbol{s}=$ Slot Number; $n \boldsymbol{n}=$ Channel Number
N2263A 32-Bit Digital I/O Module	Individual Bits: s00, s01, s02... s30, s31 8-Bit Ports: s00, s01, s02, s03 16-Bit Ports: s00, s02 32-Bit Port: s00
N2264A 12-Channel GP Relay + 3-Channel High-current GP Relays + 16-Bit Digital I/O Module	12 GP Relays: s00, s01, s02... s10, s11 3 High-current GP Relays: s20, s21, s22 16-Bit Digital I/O: Individual Bits: s30, s31, s32... s44, s45 8-Bit Ports: s30, s31 16-Bit Port: s30
N2265A 4×4 Matrix + 16-Bit Digital I/O Module	4x4 Matrix: Row 0, 1, 2, 3; Column 0, 1, 2, 3 (s00, s01, s02, s03; s10, s11, s12, s13; s20, s21, s22, s23; s30, s31, s32, s33) ${ }^{a}$ 16-Bit Digital I/O: Individual Bits: s40, s41, s42... s54, s55 8-Bit Ports: s40, s41 16-Bit Port: s40
N2266A 40-Channel MUX Module ${ }^{\text {b }}$	1-Wire Mode: s00, s01... s78, s79 ${ }^{6}$ 2-Wire Mode: s00, s01...s38, s39 Dual 2-Wire Mode: s00, s01...s38, s39 4-Wire Mode: s00, s01...s18, s19 ${ }^{\text {d }}$
N2267A 8-Channel High Current GP Module	s00, s01, s02... s07
$\begin{aligned} & \text { N2268A } \\ & 50 \Omega 3.0 \mathrm{GHz} \text { Dual 4-to-1 MUX Module } \end{aligned}$	s00, s01, s02, s03; s10, s11, s12, s13

a. A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address s23 means row 2, column 3 in Slot s.
b. The N2260A and N2266A can be used as an 80-channel 1-wire MUX module, a 40-channel 2-wire MUX module, two 20-channel 2 -wire MUX modules, or a 20-channel 4 -wire MUX module.
c. The Low (L) terminals of the 402 -wire channels form the first 401 -wire channels (Channels 00-39), and the High (H) terminals of the 402 -wire channels form the second 401 -wire channels (Channels 40-79).
d. The first channels ($\mathrm{CHOO} \& \mathrm{CH} 20$) of either banks (BANK 0 and BANK 1) form Channel 00, the second channels ($\mathrm{CH} 01 \& \mathrm{CH} 21$) of either banks form Channel 01, and so on.

Chapter 3 System Overview
Channel and Slot Addressing

Plug-in Module	Channel Addressing (snn) $s=$ Slot Number; nn = Channel Number
N2270A 10-Channel HIgh Voltage MUX Module	s00, s01, s02...s07
N2272A 1 GHz RF 1-to-9 MUX Module	s00, s01, s02...s07
N2276A/B Dual 1-to-6 (4) Microwave MUX/ Attenuator Module	Two 1-to-4(6) Microwave Switch: s00, s01, s02, s03(, s04, s05); s10, s11, s12, s13(, s14, s15) Two Attenuators: s20; s30
N2280A Optical Switch Quad 1-to-2 MUX Module	s00, s01; s10, s11; s20, s21; s30, s31
N2281A Optical Switch Dual 1-to-4 MUX Module	s00, s01, s02, s03;s10, s11, s12, s13
N2282A Optical Switch 1-to-8 MUX Module	s00, s01, s02...s07
4-Bit Built-in Digital I/O (slot 0 control module)	Individual Bits: 091, 092, 093, 094 4-Bit Port: 090
44470A 10-Channel MUX Module	s00, s01, s02, s03... s08, s09
44470D 20-Channel MUX Module	s00, s01, s02, s03...s18, s19
44471A 10-Channel GP Relay Module	Group 0: s00, s01, s02, s03, s02, s03... s08, s09 Group 1: s10, s11, s12, s13
44471D 20-Channel GP Relay Module	44472A Dual 4-Channel VHF Module

Plug-in Module	Channel Addressing (snn) $\boldsymbol{s}=$ Slot Number; $\boldsymbol{n} \boldsymbol{n}=$ Channel Number
$\begin{aligned} & 44473 \mathrm{~A} \\ & 4 \times 4 \text { Matrix Module } \end{aligned}$	Row: 0, 1, 2, 3; Column: 0, 1, 2, 3 (s00, s01, s02, s03; s10, s11, s12, s13; s20, s21, s22, s23; s30, s31, s32, s33) ${ }^{\text {a }}$
44474A 16-Bit Digital I/O Module	Individual Bits: s00, s01, s02... s14, s15 8-Bit Ports: s00, s01 16-Bit Port: s00
44475A Breadboard Module	N/A
44476A 3-Channel 13 GHz Microwave Switch Module	s00, s01, s02
44476B 2-Channel 26 GHz Microwave Switch Module	s00, s01
44477A 7-Channel Form-C Relay Module	s00, s01, s02, s03, s04, s05, s06
44478A 50Ω 1.3 GHz MUX Module	Group 0: s00, s01, s02, s03 Group 1: s10, s11, s12, s13
44478B 75Ω 1.3 GHz MUX Module	Group 0: s00, s01, s02, s03 Group 1: s10, s11, s12, s13

a. A channel number on a matrix module is formed in Slot-Row-Column format, i.e., channel address s23 means row 2, column 3 in Slot s.

Chapter 3 System Overview
 Factory Default and Reset States

Factory Default and Reset States

The table on the next page shows the settings of the instrument after a reset (in SCPI mode) as well as the default settings when theinstrument is shipped from the factory. (A table showing the 3488 reset settings is given on page 76.)

- You can reset the instrument either by pressing Shift + Card Reset on the front-panel, or with a *RST command over the remote interface.
- If a module is accidentally removed or installed while the instrument power is on, the instrument will preform a reset.

Chapter 3 System Overview Factory Default and Reset States

SCPI Mode Defaults

Item		Factory Default	Reset
Interface	GPIB/488	GPIB (Address 9)	Keep current setting ${ }^{\text {a }}$
	RS-232		Keep current setting ${ }^{\text {a }}$
System Mode	SCPI Mode	SCPI Mode	Keep current setting
	3488A Mode		Keep current setting
System Related	Display State	On	On
	Stored State	Empty	Keep current setting
	Error Queue	Empty	Not cleared
Module Related	Switching Channels	Open	Open
	Digital I/O Ports	Input	Input
	Card Pair	None	None
Scan Related	Scanning	None	Stop scan in progress
	Scan List	Empty	Empty
	ARM SOURce	IMMediate	IMMediate
	ARM TIMer (seconds)	0	0
	Arm Count	1	1
	TRIGger SOURce	IMMediate	IMMediate
	TRIGger TIMer (seconds)	0	0
	Channel Delay (seconds)	0	0
	Trigger Out Pulse	Disabled	Disabled

a. Current setting includes the selection of an interface, as well as the settings for the interface.

Chapter 3 System Overview

Factory Default and Reset States

3488 Mode Defaults

Item		Factory Default	Reset
Interface	GPIB/488	GPIB (Address 9)	Keep current setting ${ }^{\text {a }}$
	RS-232 ${ }^{\text {b }}$		Keep current setting
System Mode	SCPI Mode	SCPI Mode	Keep current setting
	3488A Mode		Keep current setting
System-Related	Display State	On	On
	Stored State	Empty	Keep current setting
	Error Queue	Empty	Cleared
Module-Related	Switching Channels	Open	Open
	Digital I/O Ports	Input	Input
	Card Pair	None	None
Scan-Related	Scanning	None	Stop scan in progress
	Scan List	Empty	Empty
	Channel Delay (seconds)	0	0
	Trigger Out Pulse	Disabled	Disabled

a. Current setting includes the selection of the GPIB interface and its address setting.
b. RS-232 interface CANNOT be used in 3488A mode.

Features and Functions

Features and Functions

This chapter provides details about particular functions and features of the Agilent 3499A/B/C Switch/Control System. The sections in this chapter describe the features using both the front-panel and the remote interface using SCPI commands. The examples in this chapter are general. For specific procedures using the front panel refer to Chapter 2. For SCPI command information refer to Chapter 5. The following sections are included in this chapter:

- M onitoring a Channel or a Slot, on page 80
- Switching a Relay Channel, on page 82
- Configuring a Multiplexer Module, on page 83
- Parallel Switching, on page 84
- Scanning, on page 85
- Digital I/O Operation, on page 95
- State Storage, on page 106
- Error Conditions, on page 108
- Self-Test, on page 109
- Display Control, on page 110
- Relay Cycle Counts, on page 111
- To Select the System Mode, on page 112

The following conventions are used for the front-panel operation.

- All keys on the front-panel keyboard are expressed in bold font and normally associated with a "press". F or example, press Mon.
- All the front-panel display annunciators are expressed in bold font followed by an "annunciator". For example, MON annunciator.
- The information shown on the front-panel display is enclosed within a pair of quotation marks.
- Shift + Recall ${ }^{1}$ indi cates the sequential operation: first press Shift, then press Recall.

[^1]
SCPI Language Conventions

Throughout this manual, the following conventions are used for SCPI command syntax for remote interface programming.

- Square brackets ([]) indicate optional keywords or parameters.
- Braces (\{\}) enclose parameter choices within a command string.
- Angle brackets ($<>$) enclose parameters for which you must specify a value.
- A vertical bar (\|) separates multiple parameters.

Rules for Using a Channel or Scan List

Many of the SCPI commands include a channel list or scan list parameter which allows you to specify one or more channels. The channel number has the form (@snn), where s is the sl ot number and nn is the channel number. Y ou can specify a slot, a single channel, multiple channels, or a range of channels as described below.

- The following command closes a single channel (channel 11) on the module installed in slot 1:

```
ROUT:CLOS (@111)
```

- The following command closes multiple channels on modules in slots 1 and 2:

```
ROUT:CLOS (@111,112,203,204)
```

- The following command closes a range of channels. When you specify a range of channels, the range may contain invalid channels (they are ignored), but the first and last channel in the list must be valid.

ROUT:CLOS (@101:111)

- Additional information about channel and slot numbering is given on page 70.

Chapter 4 Features and Functions
Monitoring a Channel or a Slot

Monitoring a Channel or a Slot

You may need to continuously monitor the current status of a particular switching channel, a digital I/O port, or an entire plug-in module. This is especially useful when developing and debugging remote interface commands or watching for an important signal.

- To monitor a channel or a port, specify the channel or port number. To monitor a plug-in module, specify the slot number. The displayed information is module type dependent as shown on the next page.
- Front-Panel Operation: To select a channel, a digital I/O port, or a slot, press Mon. The MON annunciator lights up. Press Mon again to exit this state.

If only part of the channel status on the module can be displayed at one time, press Enter to display the next part.

- Remotel nterface Operation: To enable the monitor mode, send a SCPI command similar to the ones shown bel ow.

DIAG:MON 103	! Monitor Channe 103.
DIAG:MON 400	M Monitor a DIO Port 400.
DIAG:MON 2	! M onitor the module in sl ot 2.

To query the slot or channel being monitored, send the following SCPI command.

DIAG:MON?
! Returns thesl ot or channel being monitored. Returns-1 if no channel or slot is monitored.

Chapter 4 Features and Functions

Switching a Relay Channel

Switching a Relay Channel

Switch modules can be used to route signals to and from your test system. This is achieved by closing or opening the relay channels on these modules.

- From the front-panel, you can open or close one relay channel at a time. H owever, over the remote interface, multiple relay channels can be operated by a single command if a channel list is specified. In addition, these open or closed states can be stored, and a stored channel setup can be included in a scan list (see "State Storage" on page 106).
- Whenever a switch module is reset, all of the closed relay channels on the module will be opened.
- Whenever the instrument is turned on or reset, all of the closed relay channels in the instrument will be opened.
- Front-Panel Operation: Select a channel, press Open or Close.

Select a slot, press and hold Card Reset to open all channels on the selected module.

Press Shift, then press and hold Card Reset to open all channels in the instrument.

- Remote Interface Operation: The following commands open and close multiple channels on the modules in slots 1 and 2.

OPEN (@101,103:107,207)	! Open multiplechannels.
CLOS (@101,103:107,207)	!Close multiplechannels.
SYST:CPON 1	! Open all channels on the
	modulein slot 1.

Note

When an Agilent N2260A or N2266A is configured to the 1-wire mode, only one channel on the module can be closed at a time.

Configuring a Multiplexer Module

The Agilent N2260A and N2266A 40-Channel MUX modules can be flexibly configured.

- Configurations possible include: 80-channel 1-wire 40-channel 2-wire dual 20-channel 2-wire 20-channel 4-wire
- At power on or after a reset, the MUX module will be configured as a 40-channel 2-wire MUX module (default setting).
- When configured to be an 80-channel 1-wire module, only one channel can be closed at a time.
- For more information about the N2260A see page 176. For more information about the N2266A see page 200.
- Front-Panel Operation: Select the slot in which an N2260A or N2266A is installed, press Mode (the CONFIG annunciator lights up). Select the desired function mode (i.e. 1-wire mode). Press Enter.

- Remote Interface Operation: A command parameter sets the operational mode of the multiplexer. This parameter can take one of the following values: WIRE1, WIRE2, BIWIRE2, or WIRE4.

```
[ROUTe]:FUNCtion 1, WIRE1 !Configurethemodulein slot
``` 1 to be 1-wiremode.

Chapter 4 Features and Functions
Parallel Switching

\section*{Parallel Switching}

While traditional switch/control systems open/close relays in sequence, the 3499A/B/C uses an innovative parallel driving circuit to open/close switches simultaneously. The parallel operation of the 3499A/B/C significantly increases the test throughput of an automated test system.
The following plug-in module use parallel switching: N2260A, N2261A, N2264A, N2265A, and N 2266A

F or example, the 40, 2-wire relays on the N2260A can be separated into four banks: Bank 1 (CH00-09) through Bank 4 (CH30-39). The switches (up to 10) in the same bank can be closed simultaneously ('parallel switching').
Since a relay is controlled by the signal applied to it's coil, relay coils can be arranged in arrays to simplify the driver circuits. Coils aligned in the same row share a common row control signal, and coils aligned in the same column share a common column control signal. The figure bel ow shows an array of coils with 4 rows and 10 columns. This is different from the wiring of the relay terminal from users' point of view. Relays can be connected and configured as MUX, GP, or MATRIX, while their driver circuits are similar.

The 3499A/B/C /C /C supports parallel operation of Iatching relays. Any relay in the same row can be opened or closed at the same time. Basically, the relays are switched row by row, or bank by bank.

\section*{Scanning}

The Agilent 3499A/B/C can scan switching channels, digital I/O bit channels, and stored channel setups in a scan list. When a scan starts, the first channel in a scan list is closed. The channel is then opened and the next channel in the list is closed. This process repeats for all channels in the scan list. Y ou can sweep through a scan list more than once. You can also synchronize scanned channel closures with external measurement devices.

\section*{Rules for Scanning}
- A scan list must be specified before initiating a scan. One or more switching channels, digital I/O bit channels, and/or previously stored channel setups can be included in a scan list. The order of the channels in the scan list determines the order of the channels to be scanned.
- If any plug-in module is installed or removed while the instrument is operating, the instrument will automatically perform a reset and the current scan list is cleared.
- If a scan list contains a non-existing channel, the scan cannot be performed and an error will occur.
- If a scan list contains a channel on a digital I/O module that is not configured to handshake mode \#1 or mode \#2 (see page 98), the scan cannot be performed and an error will occur.
- If a mismatch between a stored channel setup in the scan list and the current hardware configuration is found, a scan cannot be performed and an error will occur. When a stored setup is included in the scan list, the stored setup is recalled and the next channel in the scan list is switched.
- When a scan is aborted, the channel Iast scanned before the interruption will remain closed. Aborting a scan does not affect the present scan configuration. A scan cannot resume from where it is interrupted. To initiate a new scan, the channels in the scan list will be scanned from the beginning of the scan list.
- A scan list may contain up to 200 entries.

Chapter 4 Features and Functions
Scanning

\section*{The Scan Process}

The figure bel ow illustrates how a scan works.

* Note: The trigger out pulse will occur at the specified trig-out line only if you have configured to enable the slot to output.

The scan operation consists of two layers: arm layer and trigger layer. The instrument is considered to be in the idlestate whenever it is not operating within either of these layers. When a scan is initiated, the instrument is taken out of the idle state and proceeds into the arm layer. When an arm source is detected, the instrument leaves the arm layer and proceeds to the trigger layer. In the trigger layer, for each detected trigger source, it advances one step in the scan list. After advancing through all the channels/bits in the scan list, and reaching the arm count, the scan is terminated and the instrument returns to the idle state.

\section*{Idle State}

The instrument is considered to be in the idlestate whenever it is not operating within any one of the layers. When the instrument is taken out of the idle state, the SCAN annunciator lights up and operation proceeds to the arm layer. From the remote interface, the INITiate command takes the instrument out of the idle state.

\section*{Arm Layer}

The instrument requires an arm source to allow operation to proceed into the trigger layer. Y ou can select the arm source from the following:
- TIMER - with timer arm source selected, the instrument will not proceed to the trigger layer unless the specified time interval has elapsed.
- IMM - with IM M (default) arm source selected, operation immediately proceeds to the trigger layer as soon as the instrument is taken out of the idle state.
- BUS - with bus arm source selected, the instrument will not proceed to the trigger layer unless a GET or a *TRG command is received, or Step on the front-panel is pressed.
- EXT - with external (EXT) arm source selected, the instrument will not proceed to the trigger layer unless an external trigger is received from the specified trigger-in line.
- MIX - with mix arm source selected, the instrument will not proceed to the trigger layer unless a BUS event or EXTernal event occurs.
- HOLD - with hold arm source selected, the instrument will wait for a TRIGger: IMMediate command before proceeding.

\section*{Chapter 4 Features and Functions Scanning}

\section*{Trigger Layer}

In trigger layer, the instrument requires a trigger source to open the previous channel and then close the next one listed in the scan list. You can use one of the following trigger sources:
- TIMER - with timer trigger source selected, the scan list advances when the specified time interval has elapsed.
- IMM - with IMM (default) trigger source selected, the scan list advances as soon as the previous channel is opened.
- BUS - with bus trigger source selected, the scan list advances when a GET or a *TRG command is received, or Step on the front-panel is pressed.
- EXT - with external (EXT) trigger source selected, the scan list advances when an external trigger is received from the specified trigger-in line.
- MIX - with mix trigger source selected, the scan list advances when a BUS event or EXTernal event occurs.
- HOLD - with hold trigger source selected, the scan list advances when a TRIGger: IMMediate command is received.

\section*{Creating a Scan List}

Before initiating a scan, a scan list must be set up. The instrument scans the specified channels automatically in the same order of the scan list.
- The scan list is automatically cleared whenever the instrument is turned off or reset. Y ou can also clear the scan list by pressing Shift+S.List.
- Front-Pane Operation: Press S.List, the CONFIG annunciator will light. The display will show "ADD TO SCAN". Press Enter to begin building the scan list. Select each desired channel and press Enter to add the channel to the scan list. As channels are added, an asterisk is shown in the display to indicate the channel is a part of the scan list.

- Remote Interface Operation: You may use single channels, ranges of channel, or stored setups in the scan list. Set up a scan list with one command as follows:
[ROUTe]: SCAN (@100,104:109,411,1)
!Create scan list to include channe 100, channels 104 through 109, bit channe 411, and stored state 1.

\section*{Note}

Stored states may be used in scan lists. Stored states are discussed in more detail beginning on page 106.

Chapter 4 Features and Functions
Scanning

\section*{Configuring a Scan}

The scan procedure is controlled by specifying an arm source, a trigger source, and the number of sweeps (a sweep is one pass through the scan list). Delay times can also be configured.
- You can select any one of the six arm sources (listed on page 87) to control the onset of each sweep through the scan list. IMM (immediate) is the default arm source. If TIMer arm source is selected, the elapsed time can be set from 0 to 99999.999 seconds, with a 1 ms resolution.
- You can select any one of the six trigger sources (listed on page 88) to advance to the next channel in the scan list. IM M (immediate) is the default trigger source. If TIMer trigger source is selected, the elapsed time can be set from 0 to 99999.999 seconds, with a 1 ms resolution.
- Y ou can specify the number of times (between 1 and 99999) the instrument is to sweep through the scan list. When the specified number is reached, the scan stops.
- You can specify a delay time (from 0 to 99999.999 seconds, with 1 ms resolution) between when a channel is closed and when the next operation begins (and, if configured, a trigger out pulse is sent). The delay time can be set individually for each channel in the scan list, or one delay can be set for all channels in the scan list. Note that, even if the trigger source is set to I M Mediate, the scan list will not advance until the delay time is met.
- When you are using the trigger source TIMer and a delay time, they have a relationship as shown in the following diagram. If you set the delay time longer than the TIMer interval, the scan list will not advance until the delay time is met.

- Front-Pane Operation: Use the S.List menu to set the scan configuration as shown below.
```

CONFIG SCAN

```
ARM: IMM
COUNT: 00001
```

TRIG: IMM

```
```

DELAY TIME

```
```

SET ALL

```
00000.0000 SECS
3499

Press S.List. Turn knob. Press E nter.

Turn the knob to select the arm source Press Enter.

Usearrow keys and knob to select the arm count. Press Enter.

Turn the knob to select the trigger source. Press E nter.

Turn the knob to select DELAY TIME.
Press E nter.
Turn the knob to select ALL channels or individual channels. Press Enter.

Use arrow keys and knob to select the del ay time. Press Enter.

Press S.List to exit the menu.

If you select TIMER for either arm source or trigger source, an additional menu is shown that enables you to set the time in seconds.
- RemoteI nterface Operation: The following code sets the scan sweep to immediately start, the channel scan is advanced by the timer, and 10 sweeps of the scan list will occur. A 2 second delay is also set for channel 101.
```

ARM:SOURce IMMediate
ARM:COUNt 10
TRIGger:SOURce TIMer
TRIGger:TIMer 5
ROUTe:CHANnel:DELAY 2,(@101)

```
! Set arm source to IMM.
! Set arm count to 10 times.
! Set trigger source to TIM er.
! Set the trigger timer to 5 seconds.
! Set a 2 second timedelay for channe 101.

Chapter 4 Features and Functions

\section*{Performing a Scan}

Once you set up a scan list and configure the scan, the actual scan can be performed.
- If a scan list contains a non-existing channel, the scan cannot be performed and an error will occur.
- If a scan list contains a channel on a digital I/O module that does not work in M ode \#1 or M ode \#2, the scan cannot be performed and an error will occur (see page 98 for more information about modes).
- If a stored channel setup in the scan list does not match the current hardware configuration, the scan cannot be performed and an error will occur.
- Front-Panel Operation: Press Scan to begin the scan operation. If you have set the arm source and trigger source to IM M ediate, the scan will begin when the key is pressed. If you have configured other arm or trigger sources, the scan will begin when the source criteria are met.

Stop a scan in progress by pressing Shift+Scan. The last channel closed in the scan list will remain closed. You cannot pause and then continue a scan. You must start the scan operation over.

Press Step to start and step through the channels in the scan list, one channel at a time.
- Remote Interface Operation: Use the commands shown below to begin a scan or stop a scan in progress. If you abort a scan in progress, the last channel closed in the scan list will remain closed. You cannot pause and then continue a scan. You must start the scan operation over.

The INITiate command moves the instrument from the idle state to the arm layer. The arm source and trigger source will control the actual beginning of the scan.
\begin{tabular}{ll}
INITiate \\
ABORt & !nitiate the scan.
\end{tabular}

\section*{Using External Triggering}

Two control lines are provided in the rear panel mini-DIN connector: external trigger in and external trigger out. These lines can be used individually or combined to synchronize a scan list with an external instrument (such as a DMM). The figure below shows this connection. The 3499A/B/C can be configured to output a trigger pulse to notify the external instrument whenever a channel is closed. The arm or trigger source is then configured as either EXT or MIX so that the 3499A/B/C can receive the notification from the external instrument to advance to the next channel in the scan list.

Agilent 3499B

- In addition to the Ext.Trig.In and Ext.Trig.Out pair provided on the rear panel of the mainframe, the EI (external increment) and CC (channel closed) pair on a 44474A module (see page 248) can al so be used to synchronize. Specify either Slot 0 or the slot in which a 44474A module is installed to indicate which lines are to be used.
- Both the built-in trigger lines and the EI/CC lines on the 44474A are TTL compatible.
- Once enabled, the sel ected trigger-in line is immediately ready to accept the trigger signal from the external instrument. E nabling or disabling a trigger source from the front-panel sets both the trigger in and trigger out functions. On the remote interface, the trigger out function can be controlled independently.

> Chapter 4 Features and Functions Scanning
- Front-Panel Operation: Press Menu, use the knob to select "CONF EXT TRIG" and press E nter. Select either slot 0 (built-in external trigger) or the slot where a 44474A is installed and press E nter. Enable or disable the pair of trigger lines and press E nter. Press the Menu key again to exit the menu.

Press S.List, select "CONFIG SCAN", and configure the arm source or trigger source as either EXT or MIX.
- Remote Interface Operation: The following code segment will set up the 3499A/B/C to synchronize with an external instrument.
```

CONFigure:EXTernal:TRIGger:SOURce 0
! Select to use thebuilt-in
ext.trig.in and ext.trig.out
lines.
CONFigure:EXTernal:TRIGger:OUTPut 1
! Enableto output a trigger
pulseon the ext.trig.out
line.

```

ARM:SOURce EXT
TRIGger:SOURce EXT
```

! Set arm source to EXT.
! Set trigger source to EXT.

```

\section*{Digital I/O Operation}

The digital input/output is well-suited for monitoring and controlling external devices. You may use the built-in digital I/O bits or port (on the rear panel), one or more digital I/O modules, or a multifunction modules with a DIO function. In the following context, multifunction modules refer to those with a DIO function.
- The built-in digital I/O (control board) consists of four bits which can be operated either independently as four bit channels (numbered 091 through 094) or as one 4-bit port (numbered 090).
- The plug-in digital I/O modules and multifunction modules usually consist of several 8-, 16-, and/or 32-bit ports. These ports can be operated independently, which means one port can be used for output operation, while others can be used for input. However, all bits within a same 8-bit port are dependent. If one bit of a port is used for input or output operation, then all other bits of the same port can only be used for the same operation.

For more information about a specific digital I/O module, refer to "Plugin Modules" starting on page 173.

\section*{Digital I/O Configuration}
- Parameters such as flow control mode, control line polarity (PCTL), flag line polarity (PFLG), and I/O direction line polarity, are all configured for the plug-in digital I/O modules and multifunction modules. However, these DO NOT apply to the built-in 4-bit digital I/O (on the rear panel).
- The data line polarity of any 8-bit port (or the 4-bit built-in port) can be configured from the front-panel. H owever, using the remote interface, the data line polarity of any ports (8-, 16-, or 32-bit) can be configured.
- Data display format of any 8-bit port, binary or decimal (default), can only be specified from the front-panel. Once specified, the format applies to all input and output operations on the same port.
- When the instrument is turned on or reset, the handshake mode is set to M ode \#l and the polarities of all configured lines are positive. M ore information about handshake modes is given starting on page 98.

Chapter 4 Features and Functions

\section*{Digital I/O Operation}
- Front-Panel Operation: Select a digital I/O module and press Mode. "CONFIG DIO" is shown in the display. Press E nter to show the second-level menu and begin the configuration.

\section*{Note \\ Be sure to select the module, not a port or bit. The options on this menu} are only available when the module is selected.

Select a DIO module.

Press Mode.

Select flow control mode. Press E nter.

Select the control line polarity. Press E nter.

Select theflag line polarity. Press Enter.

Select thel/ O direction linepolarity. Press Enter.

Press Mode again to exit the menu.
Configure a port. Select a digital I/O port, then press Mode, the CONFIG annunciator lights up. When "DATA POLARITY" appears in the display, press Enter to set data line polarity and/or use the knob to select "DISP FORMAT" and press Enter to set data display format for the port.

- RemoteInterfaceOperation: Set the flow control parameters using the following SCPI commands. These examples assume a digital I/O module is installed in slot 4.

Set the data line polarity using the following command.
! Set thedata line pol arity of 8-bit Port 400 to positive.

Chapter 4 Features and Functions

\section*{Digital I/O Operation}

\section*{About Flow Control Modes (Handshake)}

Five flow control modes are available for Digital I/O operations. Some modes use one or more of the three flow control lines: I/O Direction, PFLG, and PCTL. Select the flow control you need for your digital input/ output applications.

\section*{Note}

The polarity of the flow control lines is assumed to be positive (the default) in the following diagrams and discussions.
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{l}
Mode \\
Number
\end{tabular} & \begin{tabular}{l}
Handshake \\
Mode \\
Definition
\end{tabular} & Notes \\
\hline 1 & Static mode \#1 & Default handshake mode. \\
\hline 2 & Static mode \#2 & Read what was written. \\
\hline 3 & \begin{tabular}{l}
Read or Write \\
and strobe
\end{tabular} & \begin{tabular}{l}
If you set a port to this mode, you cannot use \\
the port in a scan list or use card pairing \\
(ROUTe : CPAir).
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Read and write \\
strobe
\end{tabular} & \begin{tabular}{l}
If you set a port to this mode, you cannot use \\
the port in a scan list or use card pairing \\
(ROUTe : CPAir).
\end{tabular} \\
\hline 5 & Full handshake & \begin{tabular}{l}
If you set a port to this mode, you cannot use \\
the port in a scan list or use card pairing \\
(ROUTe : CPAir).
\end{tabular} \\
\hline
\end{tabular}

\section*{Static Mode \#1}

Static Mode \#l is the default mode. In this mode, data is transferred statically, there is no read or write strobe pulses or handshaking. Thel/O Direction line is active and indicates direction of transfer. This is shown in the following timing diagrams.

Approximately 1 ms after the I/O direction line goes to a low state, the digital I/O module takes control of the data lines.

Read Operation (DREAD, etc.)

\(100 \mu \mathrm{~s}\) after the 3499A/B/C is instructed to read the data lines, it releases control of the lines and the I/O direction line goes to a high state. \(150 \mu \mathrm{~s}\) later the data is actually read (latched).

\section*{Static Mode \#2}

Static Mode \#2 acts just like Mode \#1 except the output lines are not disabled during an input operation. This means that if a port is written to and then read from, the data read will be that which was just written to it. It is possible, however, that external devices might load the lines and cause a false read.

Timing for the I/O direction line is as shown in Mode \#l for write operations. F or read operations, the I/O direction line does not change.

Chapter 4 Features and Functions

\section*{Digital I/O Operation}

\section*{Read or Write and Strobe Mode \#3}

In this mode, the I/O direction line is still used to indi cate direction of transfer (input or output) but the PCTL (Peripheral control) line is used to strobe the data.

During a write operation, where the 3499A/B/C writes the data to some external device, the strobe pulse signifies that the data on the 16 or 32 data I/O lines is valid. This is shown in the following timing diagram.
Write Operation DATA LINES

The Strobe pulse is used during a read operation to signify that the 3499A/B/C has completed the read operation. This is shown in the following diagram.

\section*{Read and Write Strobe Mode \#4}

Read and Write Strobe Mode \#4 uses the I/O direction line as a Strobe pulse to indicate writing operations. The PCTL line is used to indicate Read operations. It is thus similar to the R/W and Strobe M ode \#3 except separate control lines are used for the Strobe pulses and there is no I/O direction line.

The IO Direction line is used to indicate that the data is valid on the data bus lines. IO Direction is used to trigger the receiving device.

As in Mode \#3, the PCTL (RD) line is used to indicate to the sending device that the 3499A/B/C has latched (read) the data.

Chapter 4 Features and Functions

\section*{Digital I/O Operation}

\section*{Full Handshake Mode \#5}

Handshake M ode \#5 provides a complete two wire handshake with a data direction line. During write operations, the PCTL line indicates that output data is valid; during read operations, it indicates that the digital I/O module (i.e. N2263A) is "ready for data". The PFLG line is used by the peripheral device to indi cate "ready for data" during write operations or "data valid" for read operations.

For this discussion, write operations mean the plug-in digital I/O module is controlling the data lines. Read operations mean external devices control the data lines and the digital I/O module reads the data and controls the PCTL/RD line.

The complete handshaking sequence for M ode \#5 is as follows: The 3499A/B/C checks to see if the recei ving device has set the PFLG line low, this indicates the receiving device is ready to accept data. When PFLG is low, the 3499A/B/C sets the data on the data bus and sets PCTL low. The 3499A/B/C then waits for the receiving device to set PFLG high, indi cating that it has latched the data. To complete the handshake, the 3499A/B/C sets PCTL high.

As with the Write operation, the 3499A/B/C begins by testing PFLG for a low state, indicating that the data is valid. When PFLG is low, the 3499A/B/C sets PCTL low and waits for PFLG to go high. The 3499A/B/C will set PCTL high to indicate that it has completed the data read operation. Data on the data bus must remain valid until after the 3499A/B/C sets PCTL high.

Chapter 4 Features and Functions

\section*{Digital I/O Operation}

\section*{Digital Input Operation}
- From the front-panel, you can read data from the built-in digital I/O bits/port (numbered 090 through 094) or any one of the 8-bit ports on a digital I/O module or multifunction module.
- From the remote interface, you can read data from the individual bit channels and 8-, 16-, or 32-bit ports on a digital I/O module or multifunction module, as well as from the built-in digital I/O bits/port (numbered 090 through 094).
- Instrument reset will set all digital I/O ports in the instrument as input ports. Pressing Card Reset or issuing a SYST: CPON command will set all ports on the specified module as input ports (ports on other modules are not affected).
- Front-Panel Operation: Select an 8-bit digital I/O port, press Read to read the data from the port. The data can be displayed as either decimal or binary (see page 34).
- Remote Interface Operation: Use the following command to read an individual bit (bit 6) on a module in slot 4. A " 0 " (bit cleared) or a " 1 " (bit set) will be returned.

SENSe:DIGital:DATA:BIT? 406 ! Read the bit channel 406.
The following commands read values on 8-, 16-, and 32-bit ports:
```

SENSe:DIGital:DATA:BYTE:VALue? 400
! Read the 8-bit Port 400.
SENSe:DIGital:DATA:WORD:VALue? 400
! Read the 16-bit Port 400.
SENSe:DIGital:DATA:LWORD:VALue? 400
! Read the 32-bit Port 400.

```

The range of possible returned values is shown:
\begin{tabular}{ccc}
Parameter & Decimal Range & Hex range \\
BYTE & 0 to 255 & \(00_{\mathrm{h}}\) to \(\mathrm{FF}_{\mathrm{h}}\) \\
WORD & -32768 to 32767 & \(-8000_{\mathrm{h}}\) to \(7 \mathrm{FFF}_{\mathrm{h}}\) \\
LWORD & \(-2^{31}\) to \(\left(2^{31}-1\right)\) & \(-80000000_{\mathrm{h}}\) to \(7 \mathrm{FFFFFFF}_{\mathrm{h}}\) \\
\hline
\end{tabular}

WORD values greater then 32767 and LWORD values greater then for \(\left(2^{31}-1\right)\) are returned as negative numbers. These values are in 2 's complement form.

\section*{Digital Output Operation}
- From the front-panel, you can write data to the built-in digital I/O bits/port (numbered 090 through 094) or any one of the 8-bit ports on a digital I/O module or multifunction module.
- From the remote interface, you can write data to individual bit channels and 8-, 16-, or 32-bit ports on a digital I/O module or multifunction module, as well as to the built-in digital I/O bits/port (numbered 090 through 094).
- Instrument reset will set all digital I/O ports in the instrument as input ports. Pressing Card Reset or issuing a SYST : CPON command will set all ports on the specified module as input ports (ports on other modules are not affected).
- Front-Pand Operation: Select an 8-bit port, press Write, the data from the last operation (read or write) will be displayed. Edit the data to the desired value and press E nter to write the data to the port. To cancel the write operation, press Write again instead of Enter. Y ou can edit the data in either binary or decimal form (see page 34).
- Remote Interface Operation: The following commands write an individual bit.
```

SOURce:DIGital:DATA:BIT 409,1 !Write1 to bit channed 409.
SOURce:DIGital:DATA:BIT 409,0 !Write0 to bit channed 409.

```

The following commands write date to 8-, 16-, and 32-bit ports.
```

SOURCE:DIGital:DATA:BYTE 400,128
! Writedecimal 128 to 8-bit
port 400.
SOURCE:DIGital:DATA:WORD 400,21845
! Writedecimal 21845 to 16-
bit port 400.
SOURCE:DIGital:DATA:LWORD 400, -2114
! Writedecimal 4294965182
to 32-bit port 400.

```

WORD values greater then 32767 and LWORD values greater then for \(\left(2^{31}-1\right)\) are sent as negative numbers. These values are in 2 's complement form.

\section*{Chapter 4 Features and Functions}

\section*{State Storage}

\section*{State Storage}

The 3499A/B/C provides the capability to store setups, and then recall them to put the instrument back into a known configuration. Information that can be stored includes:
- Status of all relay channels (open or closed)
- Status of digital I/O ports (input or output, flow control, etc.)
- Special module configurations (2-wire, card pair, etc.)
- Scan lists and configuration (arm source, trigger source, etc.)
- Remote interface settings (address, baud, etc.)

Additionally, you can include a stored state in a scan list as a channel.

\section*{Firmware Revision Differences}

State storage behavior differs depending upon the firmware revision of your 3499A/B/C (see page 59).
- Firmware revision 1.0 must be upgraded. Please contact your nearest Agilent Technologies Office for details.
- Firmware revisions 2.0 and 3.0 allow up to 10 states to be stored. Firmware revision 4.0 allows up to 50 stored states.
- Stored states are lost if power is removed for firmware revisions 2.0 and 3.0. Stored states are preserved when power is removed for firmware revision 4.0.
- Firmware revision 4.0 allows you store a state and apply that state when power is applied to the instrument.
- Storage memory locations are numbered 01 to 10 for Firmware revision 2.0 and 3.0. Memory locations are number 01 to 50 for Firmware revision 4.0.
- Before recalling a stored setup, the instrument verifies that all module types and slot assignment match the setup. If a mismatch is detected, an error ("RECALL FAILED") will occur.

\section*{Firmware Revision Differences (continued)}
- An instrument reset does not affect the stored instrument setup information.
- All stored setups will be cleared if the system mode is changed (for example, to 3488A mode).
- Firmware revision 3.0 allows instrument operation in either SCPI or 3488 mode, not both. The mode is selected when the firmware is loaded.

\section*{To Store an Instrument State}

Firmware revision 2.0 and 3.0 allow up to 10 stored states. Firmware revision 4.0 allows up to 50 stored states. Set the instrument to the state you want to store.
- Front-Pane Operation: To store an instrument setup, press Shift + Recall, select a memory location, and press E nter. To cancel the store operation, press Recall again instead of Enter.
- Remote Interface Operation:
*SAV 1 !Storeaninstrument setup in memory location 1.

\section*{Note}

Approximately 1 second is required to store an instrument setup into an Agilent 3499A/B/C with Firmware REV 4.0. To avoid errors in when programming, be sure to allow a 1 second interval between the store and recall operations.

\section*{To Recall an Instrument State}

You can recall a previously stored instrument setup.
- Front-Panel Operation: To recall a stored setup, press Recall, select the memory location to be recalled, and press Enter. To cancel the recall operation, press Recall again instead of Enter.
- Remote Interface Operation:
\[
\begin{array}{ll}
* \text { RCL } 1 & \begin{array}{l}
\text { ! Recall a previously stored } \\
\\
\\
\\
\\
\text { setup from memory } \\
\text { location } 1 .
\end{array}
\end{array}
\]

Chapter 4 Features and Functions

\section*{Error Conditions}

\section*{Error Conditions}

When an error occurs, the 3499A/B/C will beep and the ERR OR annunciator on the front-panel lights up. This indicates one or more command syntax or hardware errors have been detected.
- Up to 10 errors can be stored in the instrument error queue. Errors are retrieved in a first-in-first-out (FIFO) manner, which means the first error returned is the first error that was stored.
- If more than 10 errors have occurred, the last error stored in the queue (the most recent error) is replaced with "-350 QUE UE OVERFLOW". No additional errors are stored until you remove errors from the queue. If no errors have occurred when you read the error queue, the instrument responds with "NO ERROR".
- The error queue will be cleared automatically once you read the queue, change the system mode, send the *cls command, or cycle power on the instrument. However, a module reset or an instrument reset will not clear the error queue.
- Front-Panel Operation: Press View, select "ERROR", and press E nter. The first error recorded is displayed. Use the arrow key to scroll through the entire error message, then turn the knob to view other errors in the error queue.
- RemoteI nterface Operation: The errors can be returned as integers or as variant values. When an integer value is returned, you need to associate the integer value with the error (refer to "E rror Messages" on page 165). If you return a variant value, the error number and error string are returned. To detect when errors occur using the remote interface, use the SCPI status system (see page 148 for more information).
! Query theerror queuefor the first error.

\section*{Self-Test}

The 3499A/B/C can perform a self-test to verify that it is in proper operation.
- If the self-test is successful, "PASSED" will be displayed on the frontpanel. Otherwise, the reason of the failure will be displayed. F or details of all self-test failures, refer to "Self-Test Errors" on page 172.
- Front-Pane Operation: Press Menu, use the knob to select "SELFTEST", and press E nter to perform a self-test.
- Remote Interface Operation: fails.

Chapter 4 Features and Functions
Display Control

\section*{Display Control}

You can turn off the 3499A/B/C display (for security or increased processing speed for example). Y ou can also write a message of up to 13 characters to the front-panel display.

\section*{Note}

The display cannot be turned off from the front-panel.
- When the display is turned off, the entire front-panel display goes blank except for the ADRS and RMT annunciators (the ERROR annunciator will also be on if there are errors), and all keys except Local are locked.
- If the display is turned off, pressing Local causes the instrument to return to local operation, the display will be turned back on.
- The display is automatically turned on when power is cycled, or after a *RST command.
- When the display is on, you can send a message (up to 13 characters) to display on the front-panel from the remote interface. If you attempt to send more than 13 characters, only the first 13 characters can be displayed. The characters can be letters (A-Z), numbers (0-9), and some special characters ("'space () * +- , : ; ; \(\backslash\)).
- Remote Interface Operation:
DIAGnostic:DISPlay:STATe OFF ! Turn off thedisplay.
DIAGnostic:DISPlay:STATe ON ! Turn on the display.
DIAGnostic:DISPlay "Scan finished"
! Display themessage on the
front-panel.

\section*{Relay Cycle Counts}

The Agilent 3499A/B/C can read and track the relay cycle counts on some plug-in modules. This feature can be very useful in switching systems to track relay failures and predict system maintenance requirements.
- This feature is supported by the Agilent N2260A, N2261A, N2262A, N2264A, N2265A, N2266A, N2267A, N2268A, N2270A, N2272A, N2276A, and N2280A/81A/82A modules.
- The cycle counts of the tree relays (s98 \& s99) on an N2260A or N2266A can also be queried.
- Front-Pand Operation: Press View, use the knob to select "RELAY CYCLES", and press E nter. Turn the knob to select the relay channel of interest. The display shows the channel cycle count.
- Remote Interface Operation: Integer values are returned to indi cate the cycle count. If you request more than one value, the integers are returned as comma separated values in the same order as the channel in the query command.
```

DIAGnostic:RELay:CYCLes? (@101)

```
! Query relay cycle count of channed 101.
DIAGnostic:RELay:CYCLes? (@101:112)
! Query the relay cyclecount of the range of channels from 101 to 112.

Y ou can also query for the maximum relay count on a module. The returned value is the highest count on a module, but you cannot determine which relay the count applies to with this command.
\[
\begin{aligned}
\text { DIAGnostic:RELay: CYCLes:MAX? } 1! & \text { Query the maximum relay } \\
& \text { cyclecount of themodulein } \\
& \text { slot } 1 .
\end{aligned}
\]

\section*{To Select the System Mode}

The instrument can be operated in either SCPI mode or 3488A mode (except Firmware REV 3.0, see page 59 for more details). When shipped from the factory, the instrument is set to the SCPI mode. Perform the following procedure to select the desired system mode for the instrument before any operation.
1. Press Menu, the CONFIG annunciator lights up. Turn the knob until "SYSTEM MODE" is displayed, then press Enter.

\section*{SYSTEM MODE}
2. Turn the knob until the desired system mode (i.e. 3488A M ODE) is displayed, then press Enter.

HP 3488A MODE
3. The instrument will be reset if the system mode has been changed. Otherwise, it retains the current mode and you can press Menu again to exit this operation.

\section*{Note}

Switching between SCPI mode and 3488A mode will reset the instrument to the factory default settings, except the GPIB address which will retain its last setting.

This manual describes programming in the SCPI mode. F or information about the 3488 programming mode please visit www.agilent.com.

\section*{5}

\section*{Remote I nterface Reference}

\section*{Remote Interface Reference}

This chapter describes SCPI Commands (Standard Commands for Programmable Instruments) and summarizes IEEE 488.2 Common Commands applicable to the Agilent 3499A/B/C Switch/Control System. The chapter contents include:
- SCPI Command Syntax, on page 115
- 3499A/B/C SCPI Alphabetical Reference, on page 116
- 3499A/B/C SCPI Commands Functionally Grouped, on page 122
- Switch Commands, on page 127
- Specific Plug-in M odule Commands, on page 129
- Scanning Commands, on page 132
- Digital I/O Commands, on page 139
- State Storage Commands, on page 147
- Status System Commands, on page 148
- System Information Commands, on page 153
- System-Level Control Commands, on page 156
- RS-232 Commands, on page 160
- About the SCPI Language, on page 161

\section*{SCPI Command Syntax}

Throughout this manual, the following conventions are used for SCPI command syntax for remote interface programming.
- Square brackets ([]) indicate optional keywords or parameters.
- Braces (\{\}) enclose parameter choices within a command string.
- Angle brackets (\(<>\)) enclose parameters for which you must specify a value.
- A vertical bar (|) separates multiple parameters.

\section*{Rules for Using a Channel or Scan List}

Many of the SCPI commands include a channel list or scan list parameter which allows you to specify one or more channels. The channel number has the form (@snn), where s is the sl ot number and nn is the channel number. Y ou can specify a slot, a single channel, multiple channels, or a range of channels as described below.
- The following command closes a single channel (channel 11) on the module installed in slot 1 :
```

ROUT:CLOS (@111)

```
- The following command closes multiple channels on modules in slots 1 and 2:

ROUT:CLOS (@111, 112, 203, 204)
- The following command closes a range of channels. When you specify a range of channels, the range may contain invalid channels (they are ignored), but the first and last channel in the list must be valid.

ROUT:CLOS (@101:111)
- Additional information about channel and slot numbering is given on page 70.

Chapter 5 Remote Interface Reference 3499A/B/C SCPI Alphabetical Reference

\section*{3499A/B/C SCPI Alphabetical Reference}

\section*{Note Default command parameters are shown in bold.}

ABORt Abort a scan in progress regardless of the trigger source. See page 138.

\section*{ARM}
:SOURCe <BUS|EXTernal|IMMediate| TIMer|MIX|HOLD>
Set trigger source in ARM layer. See page 134.
:SOURce?
Query trigger source in ARM Iayer. See page 134.
: COUNt <number> [MIN|MAX]
Set counter in ARM Iayer. See page 134.
: COUNt? [MIN|MAX]
Query counter in ARM Iayer. See page 134.
:TIMer <seconds>|min|MAX
Set timer for sweep-to-sweep (sweeping). See page 135.
:TIMer?
Query timer in arm layer. See page 135.

\section*{CONFigure}
:EXTernal[:TRIGger]:SOURce <number>
Select the trigger source. See page 137.
:EXTernal[:TRIGger]:SOURce?
Query the trigger source. See page 137.
:EXTernal[:TRIGger][:OUTPut] <O| \(1 \mid\) OFF|ON>
Turn off/on the external trigger output. See page 137.
:EXTernal[:TRIGger][:OUTPut]?
Query state of external trigger output. See page 137.
DIAGnostic
:DISPlay[:INFOrmation] <message>Display message on front panel. See page 158.
:DISPlay:STATe <0|1|OFF|ON>Disable/E nable display. See page 158.
:DISPlay:STATe?Query state of display. See page 158.
:MONitor <slot>|<channel>|<port>|-1M onitor a slot or a channel/port, or disable a monitor. See page 159.
:MONitor?Query which slot or channel is monitored. See page 159.
[:RELay]:CYCLes? <channel_list>Query relay cycle of the specified channels. See page 155.
[:RELay]:CYCLes:MAX? <slot>
Query maximum cycles of channel relays. See page 155.
[:RELay]:CYCLes:CLEar <channel_list>Clear channel relay cycle. See page 155.
SPEEK? <slot>,<register>
Read a 8-bit data from the \(<\) register \(>\) specified. See page 131.
SPOKE <slot>,<register>,<data>
Write a 8-bit data to the \(<\) register>specified. See page 131.
INITiate Start a scanning cycle. See page 138.
[ROUTE:]
[CHANnel:]DELay <seconds>,<channel_list>|ALLSet channel-to-channel interval. See page 136.
[CHANnel:]DELay? <channel_list>Query channel-to-channel interval. See page 136.
CLOSe <channel_list>Close one or multiple channels. See page 127.
CLOSe? <channel_list>Queries relay closed state. See page 127.
CLOSe:STATe?
Query all closed relays. See page 128.
CPAir <slot1>, <slot2>|-1Pair two cards of the same type or cancel a pair. See page 129.

Chapter 5 Remote Interface Reference 3499A/B/C SCPI Alphabetical Reference

\section*{CPAir?}

Query the paired cards. See page 129.
FUNCtion <slot>,<1|2|3|4|WIRE1|WIRE2|BIWIRE2|WIRE4>
Set function mode for N 2260A. See page 130.
FUNCtion? <slot>
Query the function mode for N2260A. See page 130.
[ROUTe:] (continued)
OPEN <channel_list>|ALL
Open one, multiple or all channels. See page 128.
OPEN? <channel_list>
Query channels open state. See page 128.
SCAN[:LIST] <scan_list>
Set a sequence of channels to be scanned. See page 132.
SCAN [:LIST]?
Query the scan list. See page 132.
SCAN CLEar
Clear the scan list. See page 132.
SCAN:SIZE?
Query the size of the scan list. See page 132.

\section*{SOURCe:DIGital}
:MODE <slot>,<mode>
Set the digital I/O mode. See page 140.
:MODE? <slot>
Query the digital I/O mode. See page 140.
:CONTrol:POLarity <slot>,<polarity>
Set the polarity of control lines. See page 141.
:CONTrol:POLarity? <slot>
Query the polarity of control lines. See page 141.
:FLAG:POLarity <slot>,<polarity>
Set the polarity of flag lines. See page 141.
:FLAG:POLarity? <slot>
Query the polarity of flag lines. See page 141.
SOURCe:DIGital (continued)
:IO:POLarity? <slot>
Query the polarity of I/O direction lines. See page 141.
:IO:POLarity <slot>,<polarity>
Set the polarity of I/O direction lines. See page 141.
:DATA [:<BYTE|WORD|LWORD>]:POLarity <port>,<0|1|POS|NEG>
 Set the polarity of a port. See page 141.
:DATA[:<BYTE|WORD|LWORD>]:POLarity? <port>
 Query the polarity of a digital I/O port. See page 141.
:DATA:BIT <bit_port>,<0|1>
 :Write a 0/1 to a digital I/O bit_port. See page 143.
:DATA[:<BYTE|WORD|LWORD>[:VALue]] <port>,<data>
 Write a data to the specified port. See page 144.
:DATA [:<BYTE|WORD|LWORD>]:BLOCK <port>,<block_data>
 Write a block of data to the specified port. See page 144.
:DATA: [<BYTE|WORD|LWORD>:] TRACE <port>, <sys_mem_name>
 Write the data block in system memory to the specified digital I/O port.
 See page 145.
:TRACe:DEFine <sys_mem_name>, <size>[,<fill>]
 Define the size of data block. See page 145.
:TRACe:DEFine? <sys_mem_name>
 Query the size of data block. See page 145.
:TRACe:CATalog?
 Query the defined system memory name. See page 145.
:TRACe[:DATA] <sys_mem_name>, <block_data>
 Write data to the data block in memory. See page 145.
:TRACe:DELete[:NAME] <sys_mem_name>
 Remove one data block in system memory. See page 145.
:TRACe:DELete:ALL
 Remove all data block in system memory. See page 145.

\title{
Chapter 5 Remote Interface Reference
} 3499A/B/C SCPI Alphabetical Reference

\section*{SENSe:DIGital}
:DATA:BIT? <bit_port>
Read the specified bit_port. See page 146.
:DATA [: <BYTE|WORD|LWORD>] [:VALue]? <port>
Read data from the specified port. See page 146.
:DATA [: <BYTE|WORD|LWORD>]: BLOCK? <port>, <size>
Read a block of data from the specified port. See page 146.
:DATA: [<BYTE |WORD|LWORD>:]TRACE <port>, <sys_mem_name>
Read a block of data from the specified port to the predefined memory
block. See page 146.
:TRACe [:DATA]? <sys_mem_name>
Get the data block being read. See page 146.

\section*{STATus}
:OPERation:CONDition?
Query the Operation Condition register. See page 150.
:OPERation:ENABle <unmask>
Set the Operation Enable register. See page 150.
: OPERation: ENABle?
Query the Operation Enable register. See page 150.
: OPERation[:EVENt]?
Query the Operation Event register. See page 150.

Clear the Standard Operation enable register. See page 150.
SYSMODE < O | \(1|\boldsymbol{S C P I}| H P 3488 A>\)
Specify a system mode for the instrument. See page 159.
SYSMODE? \(\quad\) Query the system mode for the instrument. See page 159.

\section*{SYSTem}
\(:\) CPON \(<s l o t \mid A L L>\)
Reset the module to its power-on state. See page 157.
:CTYPe? <slot>
Query the card type and the serial number. See page 153.
:ERRor?
Query the error queue. See page 153.
:LOCal
Set the instrument to local mode. See page 160.
: REMote
Set the instrument to remote mode. See page 160.
: RWLock
Lock all keys on the front panel. See page 160.
: STATe:DELete <1-10>|ALL
Clear one or all the previously stored instrument states. See page 147.
:VERSion?
Query the firmware version of the instrument. See page 153.

\section*{TRIGger}
[:IMMediate]
Software trigger for HOLD off triggering. See page 138.
:SOURce <BUS|EXTernal|IMMediate| TIMer|MIX|HOLD>
Select trigger source in trigger layer. See page 135.
: SOURce?
Query trigger source in trigger layer. See page 135.
:TIMer <seconds>|MINimum|MAXimum
Set timer for channel-to-channel (scanning). See page 136.
:TIMer? <MINimum|MAXimum>
Query timer in trigger layer. See page 136.
:

Chapter 5 Remote Interface Reference

\section*{3499A/B/C SCPI Commands Functionally Grouped}

\section*{Note}

Default command parameters are shown in bold.

\section*{Switch \\ Commands}
(see page 127 for more information)
```

[ROUTe:]
CLOSe <channel_list>
CLOSe? <channel_list>
CLOSe:STATe?
OPEN <channel_list>|ALL
OPEN? <channel_list>

```

Specific Plug-in (see page 129 for more information) Commands
[ROUTe:]
CPAir <slot1>, <slot2>|-1
CPAir?
FUNCtion <slot>,<1|2|3|4|WIRE1|WIRE2|BIWIRE2|WIRE4> FUNCtion? <slot>

DIAGnostic
:SPEEK? <slot>,<register>
:SPOKE <slot>,<register>,<data>

\section*{Scan List Commands}
(see page 132 for more information)
[ROUTe:]
SCAN[:LIST] <scan_list>
SCAN [:LIST]?
SCAN CLEar
SCAN:SIZE?
```

Scan (seepage 134 for moreinformation)
Configuration
Commands
ARM
:SOURce <BUS|EXTernal| IMMediate|TIMer|MIX|HOLD>
:SOURce?
:COUNt <number>|MIN|MAX|INFinity
:COUNt? [MIN|MAX|INFinity]
:TIMer <seconds>|MIN|MAX
:TIMer? [MINimum|MAXimum]
TRIGger
:SOURce <BUS|EXTernal| IMMediate|TIMer|MIX|HOLD>
:SOURce?
:TIMer <seconds>|MIN|MAX
:TIMer? [MIN|MAX]
[ROUTe:]
[CHANnel:]DELay <seconds>,<channel_list>|ALL
[CHANnel:]DELay? <channel_list>
CONFigure
:EXTernal[:TRIGger]:SOURce <slot>
:EXTernal[:TRIGger]:SOURce?
:EXTernal[:TRIGger][:OUTPut] <0|||OFF|ON>
:EXTernal[:TRIGger][:OUTPut]?

```

\section*{Scanning \\ (seepage 138 for more information)}
```

Commands
INITiate
ABORt
TRIGger
[:IMMediate]
*TRG

```

Digital Input
Commands
(seepage 142 for more information)
SENSe:DIGital:DATA
:BIT? <bit_port>
[: <BYTE|WORD|LWORD>][:VALue]? <port>
[: <BYTE|WORD|LWORD>]:BLOCK? <port>,<size>

Chapter 5 Remote Interface Reference

Digital Output Commands

\section*{Digital} Configuration Commands

Digital I/O Memory Commands
(see page 143 for more information)
SOURce:DIGital:DATA :BIT <bit_port>,<0|1> [: <BYTE|WORD|LWORD>][:VALue] <port>,<data> [:<BYTE|WORD|LWORD>]:BLOCK <port>,<block_data>
(see page 140 for more information)
SOURce:DIGital
:MODE <slot>,<mode> :MODE? <slot> :CONTrol:POLarity <slot>,<0|1|POS|NEG> :CONTrol:POLarity? <slot> :FLAG:POLarity <slot>,<0|1|POS|NEG> :FLAG:POLarity? <slot> :IO:POLarity <slot>,<0|1|POS|NEG> :IO:POLarity? <slot>

SOURce:DIGital:DATA
[:<BYTE |WORD|LWORD>]:POLarity <port>,<0|1|POS|NEG>
[:<BYTE|WORD|LWORD>]:POLarity? <port>
(see page 145 for more information)
SOURce:DIGital:DATA
[: <BYTE|WORD|LWORD>]:TRACe <port>, <sys_mem_name>

SOURCe:DIGital:TRACe
:DEFine <sys_mem_name>, <size>[,<fill>]
:DEFine? <sys_mem_name>
: DEFine:CATalog?
[:DATA] <sys_mem_name>, <block_data>
:DELete[:NAME] <sys_mem_name>
: DELete:ALL

SENSe:DIGital:DATA
[:<BYTE|WORD|LWORD>]:TRACe <port>, <sys_mem_name>
SENSe:DIGital
:TRACE [:DATA]? <sys_mem_name>
```

State Storage (see page 147 for moreinformation)
Commands
*SAV <mem>
*RCL <mem>
SYSTem
:STATe:DELete <mem>|ALL
Status System (seepage 148 for more information)
Commands
*CLS
*ESE <value>
*ESE?
*SRE <value>
*SRE?
*STB?
STATus
:OPERation:CONDition?
:OPERation:ENABle <unmask>
:OPERation:ENABle?
:OPERation[:EVENt]?
:PRESet

System	(see page 153 for more information)
Information	$*$ IDN?
Commands	

SYSTem
:CTYPE? <slot>
:ERRor?
:VERSion?
DIAGnostic
[:RELay]:CYCLes? <channel_list>
[:RELay]:CYCLes:MAX? <slot>
[:RELay]:CYCLes:CLEar <channel_list>

```

Chapter 5 Remote Interface Reference

\section*{3499A/B/C SCPI Commands Functionally Grouped}
\begin{tabular}{|c|c|}
\hline \multirow[t]{14}{*}{System-Level Control Commands} & (see page 156 for more information) \\
\hline & *OPC \\
\hline & *OPC? \\
\hline & *RST \\
\hline & *TST? \\
\hline & *WAI \\
\hline & SYSTem \\
\hline & : CPON <slot|ALL> \\
\hline & DIAGnostic \\
\hline & \begin{tabular}{l}
:DISPlay[:INFOrmation] <message> \\
:DISPlay:STATe <0|1|OFF|ON>
\end{tabular} \\
\hline & :DISPlay:STATe? \\
\hline & \begin{tabular}{l}
:MONitor <slot>|<channel>|<port>|-1 \\
:MONitor?
\end{tabular} \\
\hline & SYSMODE <0|1|SCPI|HP3488> \\
\hline & SYSMODE? \\
\hline \multirow{5}{*}{Commands} & (see page 160 for moreinformation) \\
\hline & SYSTem \\
\hline & : LOCal \\
\hline & :REMote \\
\hline & :RWLock \\
\hline
\end{tabular}

\section*{Switch Commands}

These route commands are intended for use with all switching plug-in modules. Y ou cannot use these commands to change the state of bits in a digital I/O module.
[ROUTE:]
CLOSe <channel_list>
CLOSe? <channel_list>
This command closes the switching channels specified in the channe_list. The channe__list has the form @snn, where s is the slot number and nn is the channel number. For all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:
\begin{tabular}{cl}
\hline 3499 A & slots 0 through 5 \\
3499 B & slots 0 through 2 \\
3499 C & slots 0 through 9 \\
\hline
\end{tabular}

The channel number, nn, is plug-in module dependent. Channel numbers for plug-in modules are listed on page 70.

To close:
- a single channel, use CLOS (@snn);
- multiple channels, use CLOS (@snn,snn...);
- sequential channels, use CLOS (@snn:snn);
- groups of sequential channels, use CLOS (@snn:snn,snn:snn);
- or any combination of the above.

Channels in a channel_list may not close simultaneously. The order in which the channels close when operated by a single command is not guaranteed. Use sequential CLOSe commands if needed.

The cLOS? query returns a " 1 " for a closed channel and a " 0 " for an open channel. If you specify a list of channels, the query returns a comma separated list of 0's and 1's, in the same order as thechannel_list. The returned values indicate the programmed state of the relay. This query does not physically monitor a relay and cannot report a failed relay.

Chapter 5 Remote Interface Reference Switch Commands
[ROUTE:]
CLOSE: STATE?
This query returns a comma-delineated list of the closed channel relays for all relays on all installed plug-in modules. The returned values will be in the form snn, where s is the slot number and nn is the channel number. The returned values indi cate the programmed state of the relay. This query does not physically monitor a relay and cannot report a failed relay.

\section*{[ROUTE:]}

OPEN <channel_list>|ALL
OPEN? <channel_list>
This command opens all the switching channels specified in the channel_list. The channel_list has the form @snn, where s is the slot number and \(n n\) is the channel number. See the close command description for a description of channel_list.
The open? query returns a " 1 " for open channels and a " 0 " for a closed channel. If you specify a list of channels, the query returns a comma separated list of 0's and 1's, in the same order as thechannel list. The returned values indicate the programmed state of the relay. This query does not physically monitor a relay and cannot report a failed relay.

\section*{Specific Plug-in M odule Commands}
```

[ROUTe:]
CPAir <slot1>,<slot2>|-1
CPAir?

```

This command is used to group two cards of the same type together effectively assigning both cards to both slot numbers. When a command is sent to one of the paired cards, that command is executed on both cards in succession - lowest slot number first. The card pair feature is especially useful when doing 4-wire scanning. Only two identical plug-in modules can be paired. M odules that can be paired include the switching modules (MUX, GP and M atrix), the digital I/O modules, and the multifunction modules.

The slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:
\begin{tabular}{ll}
\hline 3499 A & slots 1 through 5 \\
3499 B & slots 1 through 2 \\
3499 C & slots 1 through 9 \\
\hline
\end{tabular}

After two switching modules are paired, opening/cl osing/scanning one or more channels on either one of the paired modules will result in the same operation on the respective channels on the other module being performed at the same time.

The N2260A and N2266A are configurable MUX modules. Only when both modules are configured to the same function, can the two modules be paired. Once paired, changing the function of one module will be duplicated on the other module in the pair. Page 130 gives additional details about the N2260A and N2266A configuration.

You can pair DIO modules if they are used in handshake M ode \#l or \#2 (but not in Mode \#3 or \#4 or \#5). Once paired, writing data on either one of the paired modules will write the data on the other module.

You can cancel a card pair by specifying a "-1" for the second <slot> parameter. There will be no paired cards after an instrument power-on or reset.

The ROUTe: CPAir? query returns a list of four numbers separated with commas, indicating the four slots in which two pairs of modules are plugged. If there is only one pair, " 0,0 " will be returned for the last two numbers. \(0,0,0,0\) is returned if no cards are paired.

Chapter 5 Remote Interface Reference
Specific Plug-in Module Commands

For example, using a 3499C mainframe, if you send ROUT: CPA 1,3 to pair the modules in slots 1 and 3 , the ROUT: CPA? query will return:
```

    1,3,0,0
    [ROUTe:]
FUNCtion <slot>,<1|2|3|4|WIRE1|WIRE2|BIWIRE2|WIRE4>
FUNCtion? <slot>

```
[ROUTe:] FUNCtion is used to configure a N2260A (see page 176) or N2266A (see page 200) 40-channel MUX module. F our configurations are possible:
- 80-channel 1-wireMUX
- 40-channel 2-wire MUX
- two 20-channel 2-wire MUXs
- 20-channel 4-wire MUX

After an instrument power on or reset, the module will return to the default 40-channel 2-wire MUX mode. Changing function mode will open all the switching channels on a module.
1-Wire Mode (1|WIRE1) configures the MUX as an 80-channel singleended (1-wire) MUX module. The valid channel numbers are s00 to s79. The Low (L) terminals form channels 00 through 39, the High (H) terminals form channels 40 through 79. Only one channel can be closed at a time when in 1-wire mode.

2-Wire Mode (2|WIRE2) configures the M UX as a 40-channel 2-wire MUX module. The valid channel numbers ares00-s39. To close/open/scan one channel is actually to close/open/scan a 2-wire pair.
Dual 2-Wire Mode (3|BIWIRE2) configures the MUX as two independent 20-channel 2-wire MUX modules. The valid channel numbers are s00-s39 (s00-s19 for the first MUX and s20-s39 for the second).
4-Wire Mode (4 |WIRE 4): This mode configures the N2260A or N2266A as a 20-channel 4-wire MUX module. Channels 20 through 39 (2-wire) are automatically paired with Channels 00 through 19. The valid channel numbers are s00-s19. To close/open/scan a channel is actually closing/opening/scanning a 4-wire connection in this mode.
If two modules are paired, changing the configuration on one module will result in the other module being changed to the same configuration. Two modules CANNOT be paired if they are configured differently.

The [ROUTe:] FUNCtion? query returns the current configuration of the module in the specified slot. The returned string will be one of WIRE1, WIRE2, BIWIRE2, or WIRE4. An error is generated if no module is installed.
[ROUTE:]
DIAGnostic
:SPEEK? <slot>, 4
:SPOKE <slot>,0,<data>
These commands read and write an 8-bit data register on the 44475A Breadboard M odule (see page 251).

Using these commands with newer modules (models beginning with N22xxx) will generate an error.
Valid sl ot numbers are:
\begin{tabular}{ll}
\hline 3499A & slots 1 through 5 \\
3499 B & slots 1 through 2 \\
3499 C & slots 1 through 9 \\
\hline
\end{tabular}

\footnotetext{
DIAG: SPEEK? returns a decimal number representing the binary weighted values of the bits in the register connected to the DI lines of the breadboard. 4 is the register number. Any other register number will not generate an error and will return the value 255.
DIAG: SPOKE writes a decimal number (<data \(\rangle\)) representing the binary weighted values of the bits to the register connected to the DO lines of the breadboard. 0 is the register number. Any other register number will not generate an error but will have no effect.

In the form of the value returned or written as data, a " 1 " represents a TTL high and a " 0 " represents a TTL low on the DI or DO line.
}

\section*{Chapter 5 Remote Interface Reference Scanning Commands}

\section*{Scanning Commands}

The Agilent 3499A/B/C can scan switching channels, digital I/O bit channels, and even the stored channel setups in a scan list. You can combine scanned channels with an external measurement device or source and synchronize the scan with the measurements.

To perform scanning you must:
1. create a scan list
2. configure the scan
3. initiate the scan
4. trigger the arm layer
5. trigger the trigger layer

The rules for scanning are described on page 85.

\section*{Scan List Commands}
```

[ROUTe:]
SCAN[:LIST] <scan_list>
SCAN[:LIST]?
SCAN CLEar
SCAN:SIZE?

```

The ROUTe : SCAN : LIST command creates a scan list. A scan list can contain any combination of switch channels, digital bits, or stored channel states (see page 106).

The scan_list has the form @snn, where s is the slot number and nn is a specific channel number. F or all mainframes, slot 0 refers to the 3499A/B/C control board. Valid slot numbers are:
\begin{tabular}{ll}
3499A & slots 0 through 5 \\
3499B & slots 0 through 2 \\
3499C & slots 0 through 9
\end{tabular}

The channel numbers, nn, are plug-in module dependent. Channel numbers for specific plug-in modules are listed on page 70.

To create a scan list using:
- a single channel, use SCAN (@snn);
- multiple channels, use SCAN (@snn,snn...);
- sequential channels, use SCAN (@snn:snn);
- groups of sequential channels, use SCAN (@snn:snn,snn:snn);
- or any combination of the above.

Any digital I/O lines included in scan_list must be operating in handshake M ode \#l or \#2. The 4-bit built-in digital I/O bits (091-094) can be included in a scan_list.

N2260A and N2266A: The configuration must be specified before defining the channels or channel range to be scanned. Page 130 describes the configuration. The two tree relays (s98 and s99) can not be included in a scan_list.

A scan list may contain up to 200 entries. One channel setup, regardless of its channel number, is counted as one "channel" in a scan_list.
The ROUTe: SCAN: LIST? query returns the sequence of channels included in the scan_list. A comma-delineated channel list is returned. The list is in same order as in the scan_list and in the form of (snn,snn,mm,...), where snn is the channel number and mm is a stored channel setup.

The ROUTe: SCAN CLEar command clears the scan list. This command has no effect on the scan configurations except clearing all the channels/ bits or the stored channel setups included in the <scan_list>.

The ROUTe: SCAN: SIZE? query returns the number of channels in the scan_list. The returned value is an integer number between 0 and 200. A stored setup in the scan is counted as one "channel".

Chapter 5 Remote Interface Reference Scanning Commands

\section*{Scan Configuration Commands}

These command set the arm and trigger layer parameters. See "The Scan Process" on page 86 for a complete description of the layers and scan configuration process.

ARM
```

:SOURce <BUS|EXTernal|IMMediate|TIMer|MIX|HOLD>
:SOURce?

```

This command specifies the event control source for the arm layer. A complete description of the arm layer and how it relates to scanning begins on page 85 . The ARM source can be specified to be one of the following:
- BUS - the sweep of the scan list starts after a *TRG or GET is received.
- ExTernal - the sweep of scan list starts after an external trigger is received.
- ImMediate - the sweep of scan starts immediately after INITiate (or the end of a scan if multiple scans are specified).
- tIMer - the sweep of the scan list starts after the timer interval.
- MIX - the scan will continue after a BUS or EXTernal event occurs.
- hold - the sweep of the scan list starts when a TRIGger [:IMMediate] command is received.

After the power is applied or a reset (*RST) command is received, the default ARM source is IMMediate.

The ARM: SOURce? query returns a string. Possible values retuned include: BUS, EXTernal, IMMediate, TIMer, MIX, or HOLD.

\section*{ARM}
: COUNt <number>|MIN|MAX|INFinity :COUNt? [MIN|MAX|INFinity]
This command sets the number of times the scan list is performed. MIN specifies a single sweep, MAX specifies 99,999 sweeps, and INF continues sweeping the scan list indefinitely (until an ABORt command is received). Following power on or a reset (*RST) command, the ARM: COUNt is set to 1 (MIN).

The ARM: Count? query returns the number of scanning cycles set by ARM: COUNt. The optional parameters MIN and MAX allow you to query the module for these values instead of looking them up in the command reference. MIN returns " 1 ", MAX returns "99999", and INF returns "-1".
```

ARM
:TIMer <seconds>|MIN|MAX
:TIMer? [MIN|MAX]

```

This command sets the sweep-to-sweep interval in the arm layer (the TRIGger:TIMer command sets the channel-to-channel interval in the trigger layer). This timer is valid only if the TIMer is set using the ARM: SOURce command.

You can set seconds to any value between 0.000 (MIN) and 99999.999 (MAX) in increments of 0.001 seconds. When power is applied the value is set to 0 (min).

The ARM: TIMer? query returns the sweep-to-sweep interval in seconds. The returned number is a value between 0 and 99999.999 (seconds). The optional parameters MIN and MAX allow you to query the module for these values instead of looking them up in the command reference. MIN returns " 0 " and MAX returns " 99999 ".

\section*{TRIGger}
:SOURce <BUS|EXTernal|IMMediate|TIMer|MIX|HOLD> : SOURce?

This command specifies the event control source for the trigger layer. A complete description of the trigger layer and how it relates to scanning begins on page 85. The TRIGger source can be specified to be one of the following:
- bUS - the scan advances after a *TRG or GET is received.
- ExTernal - the scan list advances after an external trigger is received.
- immediate - the scan advances immediately after the previous channel is closed (if no ROUTe: CHANnel: DELay value is set).
- timer - the scan advances after the timer interval.
- MIX - the scan advances after a BUS or EXTernal event occurs.
- hold - the sweep of the scan list starts when a TRIGger [: IMMediate] command is received.
After the power is applied or a reset (\({ }^{\mathrm{R} S T}\)) command is received, the default TRIGger source is IMMediate.

The TRIGger: SOURce? query returns a string. Possible values retuned include: BUS, EXTernal, IMMediate, TIMer, MIX, or HOLD.

Chapter 5 Remote Interface Reference Scanning Commands

\section*{TRIGger}
:TIMer <seconds>|MIN|MAX
:TIMer? [MIN|MAX]
This command sets the channel-to-channel interval in the trigger layer (the ARM: TIMer command sets the sweep-to-sweep interval in the trigger layer). This timer is valid only if the TIMer is set using the TRIGger: SOURce command.
You can set seconds to any value between 0.000 (MIN) and 99999.999 (MAX) in increments of 0.001 seconds. When power is applied, the value is set to 0 (MIN).

The TRIGger: TIMer? query returns the channel-to-channel interval in seconds. The returned number is a value between 0 and 99999.999 (seconds). The optional parameters MIN and MAX allow you to query the module for these values instead of looking them up in the command reference. MIn returns "0" and MAx returns "99999".
[ROUTE:]
[CHANnel:]DELay <seconds>, <channel_list>|ALL
[CHANnel:]DELay? <channel_list>
This command specifies a delay time (from 0 to 99999.999 seconds, with 1 ms resolution) between when a channel in the scan list is closed and the next operation begins (and, if configured, a trigger out pulse is sent). The delay time can be set individually for each channel in the scan list, or one delay can be set for all channels in the scan list. Note that, even if the trigger source is set tol M M ediate, the scan list will not advance until the delay time is met. Following power on or a reset (*RST) command, the delay time is set to " 0 ".

The channel_list can be:
- a single channel, use DEL (@snn) ;
- multiple channels, use DEL (@snn,snn...);
- sequential channels, use DEL (@snn:snn);
- groups of sequential channels, use DEL (@snn:snn,snn:snn);
- or any combination of the above.

The ROUTe : CHANnel : DELAy? query returns the delay time of each channel included in the channel_list. A comma-delineated set of values is returned. The values are in same order as in the channel_list and in the form of (snn,snn,mm,...), where snn is the channel number and mm is a stored channel setup.
```

CONFigure
:EXTernal[:TRIGger]:SOURce <slot>
:EXTernal[:TRIGger]:SOURce?
:EXTernal[:TRIGger][:OUTPut] <0|1|OFF|ON>
:EXTernal[:TRIGger][:OUTPut]?

```

These commands select and enable external triggers. Two possible source are available: the built-in source available at the rear-panel miniDIN connector or the EI/CC lines in a 44474A DIO M odule. For additional information about external triggering see "Using External Triggering" on page 93.

The slot parameter in the command sets the location of the external trigger lines. The built-in trigger lines are on slot " 0 ". If a 44474A is installed, slot can be set to the corresponding slot number. After power on or a reset (*RST) command, the slot is set to " 0 ".

The CONFigure: EXTernal:TRIGger: SOURce? query returns a number indicating the external trigger source.

The CONFigure:EXTernal:TRIGger:OUTPut command enables or disables the external trigger out pulse. This pulse is output after a channel is closed during a scan operation when enabled. The output pulse timing may be delayed after the channel is closed if the ROUTe: CHANnel:DELay command has been set for the channel. After power on or a reset (*RST) command is received, the output pulse is disabled (off).

The CONFigure: EXTernal:TRIGger: OUTPut? query returns either a " 0 " (disabled) or " 1 " (enabled) indicating the status of the external trigger output.

Chapter 5 Remote Interface Reference Scanning Commands

\section*{Scanning Commands}

These commands enable the scan, stop the scan, and provide triggers for arm and trigger layer sources.

\section*{INITiate}

This command takes the instrument out of the idle state and moves it to the arm layer. If the ARM: SOURce is set to IMMediate, the instrument moves directly to the trigger layer. If the TRIGger: SOURce is set to IMMediate, the scan begins.
You must always send the INITiate command to move the instrument out of the idle state, regardless of the arm and trigger sources used. For example, if you set the arm source to ExTernal, the instrument will not move to the trigger layer until the InITiate command is received and then an external trigger occurs.

\section*{ABORt}

This command stops a scan in progress. This command does not affect the scan configuration or the scan list. A reset (*RST) command will also stop a scan in progress, but the scan configuration and scan list are lost.
When a scan is aborted, the channel last scanned before the interruption will remain closed. A scan cannot resume from where it is interrupted.

\section*{TRIGger [: IMMediate]}

This command is used as a trigger source in the arm or trigger layer when the source is set to HOLD.
*TRG
This IEEE-488.2 common command is used as a trigger source in the arm or trigger layer when the source is set to bus.

\section*{Digital I/O Commands}

You may use the built-in digital I/O bits or port, one or more digital I/O modules, or a multifunction modules with a DIO function. In the following context, multifunction modules refer to those with a DIO function.
- The built-in digital I/O (control board) consists of four bits which can be operated either independently as four bit channels (numbered 091 through 094) or as one 4-bit port (numbered 090).
- The plug-in digital I/O modules and multifunction modules usually consist of several 8-, 16-, and/or 32-bit ports. These ports can be operated independently, which means one port can be used for output operation, while others can be used for input. However, all bits within a same 8-bit port are dependent. If one bit of a port is used for input or output operation, then all other bits of the same port can only be used for the same operation.
For a complete discussion of digital I/O operation refer to "Digital I/O Operation" on page 95.

Chapter 5 Remote Interface Reference

\section*{Digital I/O Commands}

\section*{Digital Configuration Commands}

These commands set the digital I/O handshake mode, handshake line polarities, and data line polarities. The port parameter is in the form snn, where s is the slot number and \(n n\) is the first channel on the digital port. The port parameter is plug-in module dependent. Valid port numbers for each plug-in module are shown beginning on page 70.
```

SOURce:DIGital
:MODE <port>,<mode>
:MODE? <port>

```

This command sets the handshake mode to use. Five handshake modes are available and are specified as an integer from 1 to 5 . See "About Flow Control M odes (Handshake)" on page 98. The modes are shown below.
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{l}
Mode \\
Number
\end{tabular} & \begin{tabular}{l}
Handshake \\
Mode \\
Definition
\end{tabular} & Notes \\
\hline 1 & Static mode \#1 & Default handshake mode. \\
\hline 2 & Static mode \#2 & Read what was written. \\
\hline 3 & \begin{tabular}{l}
Read or Write \\
strobe
\end{tabular} & \begin{tabular}{l}
If you set a port to this mode, you cannot use the \\
port in a scan list or use card pairing \\
(ROUTe \(:\) CPAir).
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Read and write \\
strobe
\end{tabular} & \begin{tabular}{l}
If you set a port to this mode, you cannot use the \\
port in a scan list or use card pairing \\
(ROUTe \(:\) CPAir).
\end{tabular} \\
\hline 5 & Full handshake & \begin{tabular}{l}
If you set a port to this mode, you cannot use the \\
port in a scan list or use card pairing \\
(ROUTe \(:\) CPAir).
\end{tabular} \\
\hline
\end{tabular}

Only the first port on a digital I/O module can be set to mode \#3, mode \#4, or mode \#5. When set to modes 3, 4, or 5, the three control lines are valid for the port used. Other ports on the same module can be used in modes \#1 or \#2 (the three control lines do not apply to these ports).

This command cannot be used with the built-in 4-bit digital I/O port.
The SOURce: DIGital: MODe? query returns an integer ranging from 1 to 5 .
```

SOURce:DIGital
:CONTrol:POLarity <slot>,<0|1|POS|NEG>
:CONTrol:POLarity? <slot>
:FLAG:POLarity <slot>,<0|1|POS|NEG>
:FLAG:POLarity? <slot>
:IO:POLarity <slot>,<0|1|POS|NEG>
:IO:POLarity? <slot>

```

These commands set the polarity of the three handshake lines. The CONTrol portion of the command works with the PCTL (Peripheral control) line. The flag portion of the command works with the PFLG (peripheral flag) line. The io portion of the command works with the I/O direction line.

The slot parameter is a decimal ranging from 1 to 5 . These commands do not work with the built-in 4-bit digital I/O port (0).

Following power on or a reset (*RST) command, the polarities are set to 0 or POSitive.

The query versions of these commands return one of two strings: POS or NEG.

SOURCe: DIGital:DATA
[: <BYTE|WORD|LWORD>] : POLarity <port>, <0|1|POS|NEG>
[: <BYTE|WORD|LWORD>] :POLarity? <port>
This command sets the data line polarity for the specified port. The current state of the data lines is not changed by this command.

Following power on or a reset (*RST) command, the polarity is set to 0 or POS.

Chapter 5 Remote Interface Reference

\section*{Digital I/O Commands}

\section*{Digital Input Commands}

These commands read individual bits or complete ports. Some digital I/O configuration commands may affect how these bits are read. The port parameter is in the form snn, where s is the slot number and \(n n\) is the first channel on the digital port. The port parameter is plug-in module dependent. Valid port numbers for each plug-in module are shown beginning on page 70.

\section*{SENSe:DIGital:DATA}
:BIT? <bit_port>
This query reads a bit from the specified bit_port and returns either a " 0 " or a " 1 ". bit_port is in the form of snn, where s is the slot number and nn is the bit number. The built-in 4-bit digital I/O port has bit numbers 091 to 094. The plug-in module bit numbers are module dependent (see page 70).
```

SENSe:DIGital:DATA
[:<BYTE|WORD|LWORD>][:VALue]? <port>

```

This query reads data from the specified port and returns an integer representing the binary-weighted value of the bits. The value returned depends upon the first parameter as follows:
- BYTE - reads 8 bits and returns an integer between 0 and \(255\left(00_{h}\right.\) and \(F F_{h}\)).
- WORD - reads 16 bits and returns an integer between -32768 and \(+32767\left(-8000_{h}\right.\) and \(\left.+7 F F F_{h}\right)\). Negative numbers returned are 2's complement numbers.
- LWORD - reads 32 bits and returns an integer between \(-2^{31}\) and \(+\left(2^{31}-1\right)\left(-80000000_{h}\right.\) and 7FFFFFFF \(h\)). Negative numbers returned are 2's complement numbers.
Numbers greater than +32767 (WORD) and \(+\left(2^{31}-1\right)\) (LWORD) will be returned as negative numbers. When the returned data is negative, you must calculate the actual bit state from the 2's complement form.

SENSe:DIGital:DATA
[: <BYTE|WORD|LWORD>]:BLOCK? <port>, <size>
This query returns block data. Block data has the form:
<\#digits>dength>block>, where:
- <\#di gits> decides how many decimal digits are used to define 4ength \(>\);
- \(\downarrow e n g t h>\) decides how many bytes are to be transferred in <block>;
- <block> contains the actual data to be transferred. <block> may contain from 1 to 2048 bytes.
The returned block will contain the number bytes specified in <size>. The value of size will be the value of length in the returned block.
Set port to 090 to read blocks on the built-in 4-bit digital I/O port.
The first parameter sets the value returned. If you omit the parameter, byte data is assumed.

\section*{Digital Output Commands}

These commands set individual bits or complete ports. Some digital I/O configuration commands may affect how these bits are implemented. The port parameter is in the form snn, where s is the slot number and nn is the first channel on the digital port. The port parameter is plug-in module dependent. Valid port numbers for each plug-in module are shown beginning on page 70 .
```

SOURce:DIGital:DATA
:BIT <bit_port>,<0|1>

```

This command sets a bit in the specified bit_port. bit_port is in the form of snn, where s is the slot number and nn is the bit number. The built-in 4-bit digital I/O port has bit numbers 091 to 094. The plug-in module bit numbers are module dependent (see page 70).

Chapter 5 Remote Interface Reference

\section*{Digital I/O Commands}

SOURCe:DIGital:DATA
[: <BYTE|WORD|LWORD>][:VALue] <port>, <data>
This command sets a value on the specified port. data is a decimal value representing the desired bit pattern. The value of data depends upon the first parameter as follows:
- BYTE - writes 8 bits to the specified port. 16- or 32-bit modules will be used as two or four 8-bit ports respectively. data can range from 0 to \(255\left(00_{h}\right.\) and \(\left.\mathrm{FF}_{\mathrm{h}}\right)\). If writing to the built-in 4-bit digital I/O port (port \(=090\)), data can range from 0 to 15 .
- WORD - writes 16 bits to the specified port. 16- or 32-bit modules will be used as one or two 16-bit ports respectively. data can range from -32768 to \(+32767\left(-8000_{h}\right.\) and \(\left.+7 F F_{h}\right)\). Values above 32767 must be converted to the 2's complement form and sent as negative numbers.
- LWORD - writes 32 bits to the specified port. This parameter is only valid on 32-bit modules. data can range from \(-2^{31}\) and \(+\left(2^{31}-1\right)\) \(\left(-80000000_{h}\right.\) and 7FFFFFFF \(\left.{ }_{h}\right)\). Values above \(+\left(2^{31}-1\right)\) must be converted to the 2 's complement form and sent as negative numbers.

SOURCe:DIGital:DATA
[: <BYTE|WORD|LWORD>]: BLOCK <port>, <block_data>
This writes block data to the specified port. Block data has the form: \(<\#\) digits \(>\) ength \(>\) block \(>\), where:
- <\#digits> decides how many decimal digits are used to define <ength>;
- <ength > decides how many bytes are to be transferred in 〈bl ock>;
- <bl ock>contains the actual data to be transferred. <block> may contain from 1 to 2048 bytes.

Set port to 090 to write blocks to the built-in 4-bit digital I/O port.
The first parameter sets how the value of block_data is interpreted. If you omit the parameter, BYTE data is assumed.

F or example, the command bel ow sends a block of data, "ABCDE FGHIJ ", to 16 -bit port 100. Since the ASCII characters A and B have decimal values of 65 and 66, respectively, the binary equivalent of 65 and 66 are written to port 100. A is written to the upper 8 bits and \(B\) to the lower 8 bits; then the \(C\) and \(D\) are written, and so on.

SOUR:DIG:DATA:WORD:BLOCK 100,\#210ABCDEFGHIJ

\section*{Digital I/O Memory Commands}

Y ou can use the Agilent 3499A/B/C internal memory to store digital data. After defining the memory, you can put data in memory for later writing to a digital port, or you can read digital port data directly into memory. Two independent blocks of memory can be used. A power on or reset (*RST) command clears all defined memory blocks.
```

SOURCe:DIGital:TRACe
:DEFine <sys_mem_name>,<size>[,<fill>]
:DEFine? <sys_mem_name>
:DEFine:CATalog?

```

The SOURCe:DIGital:TRACe:DEFine command defines a memory block for use.

The sys_mem_name parameter is a string containing up to 12 characters that names the memory block.
size defines the number of bytes to use for the block memory. Y ou can specify memory size from 1 to 32768 bytes. If two memory blocks are being defined (using two SOURce:DIGital:TRACe:DEFine commands) the total memory size defined must not exceed 32768 bytes.

If the fill parameter is used, it puts a value into each of the bytes defined in size. The value of fill can range from 0 to 255 (0 to \(\mathrm{FF}_{\mathrm{h}}\)).
The SOURce:DIGital:TRACe:DEFine? query returns the size of the memory data block (in bytes). The returned value can range from 1 to 32768.

The SOURce:DIGital:TRACe:CATalog? query returns a string containing the name(s) of defined memory blocks. If two memory blocks are defined, the sting contains both names separated by a comma.

\section*{SOURce:DIGital:TRACe}
:DELete[:NAME] <sys_mem_name>
:DELete:ALL
These commands remove a memory block previously defined. With the sys_mem_name parameter, only one block is removed. The ALL form of the command removes all defined memory blocks.

Chapter 5 Remote Interface Reference

\section*{Digital I/O Commands}
```

SOURce:DIGital:TRACe
[:DATA] <sys_mem_name>, <block_data>

```

This command loads a memory block with data. The sys_mem_name parameter must have been previously defined. The block_data is in the form: <\#digits>dength>block>, where:
- <\#digits> decides how many decimal digits are used to define <ength>;
- <length > decides how many bytes are to be transferred in 〈block>;
- <block> contains the actual data to be transferred. <block> may contain from 1 to 2048 bytes.
```

SOURce:DIGital:DATA

```
 [:<BYTE|WORD|LWORD>]:TRACe <port>, <sys_mem_name>

This command writes a block of data, stored in a memory location, to the specified port. The memory location must have been defined using the SOURCe:DIGital:TRACe:DEFine command and the data written to the memory location using the source:DIGital:TRACe command.
```

SENSe:DIGital:DATA
[:<BYTE|WORD|LWORD>]:TRACe <port>,<sys_mem_name>

```

This command reads a block of data from a digital I/O port and puts the data in memory. The port parameter is in the form snn, where s is the slot number and \(n n\) is the first channel on the digital port. Theport parameter is plug-in module dependent. Valid port numbers for each plug-in module are shown beginning on page 70.

The BYTE, WORD, or LWORD forms of this command specify 8-, 16-, and 32bit operations, respectively. If omitted, BYTE is assumed.

\section*{SENSe: DIGital}
:TRACE [: DATA]? <sys_mem_name>
This query returns a block of data from the specified memory location. the data is returned in the form: <\#digits><ength><block>, where:
- <\#digits> decides how many decimal digits are used to define <ength>;
- <length > decides how many bytes are to be transferred in 〈block>;
- <block> contains the actual data to be transferred. <block> may contain from 1 to 2048 bytes.

\section*{State Storage Commands}

The 3499A/B/C provides the capability to store setups, and then recall them to put the instrument back into a known configuration. The operation of state storage is dependent upon the instrument's firmware revision. Refer to "State Storage" on page 106 for more details.

The mem parameter specifies memory locations. Storage memory locations are numbered 01 to 10 for Firmware revisions 1.0, 2.0, and 3.0. Memory locations are number 01 to 50 for Firmware revision 4.0.

Saved states can be used as a channel in scan lists. Saved states are not affected by the reset (*RST) command.

\section*{*SAV <mem>}

This IEEE 488.2 common command saves the current instrument setup in the memory location specified. A saved memory location can be used in a scan list as a channel.
```

*RCL <mem>

```

This IEEE 488.2 common command restores the instrument to a saved instrument state.

SYSTem:STATe:DELete <mem>|ALL
This command deletes a single instrument state or all stored states.

Chapter 5 Remote Interface Reference
Status System Commands

\section*{Status System Commands}

This section describes the structure of the SCPI status system for the Agilent 3499A/B/C and describes the commands used to work with the status system. The status system records various conditions, events, and states of the instrument in three register groups. The three groups are shown below.

Each register group has one or more low-level registers. These low-level registers are called condition, event, or enable registers and control the action of specific bits in the registers. Y ou read or write to the registers using binary-weighted decimal numbers.

A condition register continuously monitors the state of the instrument. The bits in the condition register are updated in real time (they are not latched). The 3499A/B/C uses a condition register as a part of the Operation Status Register.
An event register latches events from the condition register. The 3499A/B/C has an event register as a part of the Operation Status Register and the Standard Event Register.

An enableregister defines the bits in the event register that are reported to the Status Byte Register. Y ou can read or write to an enable register.

You read and write to the Standard Event Register and Status Byte Register using IEEE488.2 common commands. The Operation Status Register uses SCPI commands.

You can read the status registers to determine the current operating state of the instrument. Y ou can use a technique called serial polling to periodically read the Status Byte Register and determine the operating state of the instrument. Y ou can also set the status system to generate an interrupt (on the GPIB SRQ line) when one or more specific events occur (called SRQ interrupt). Not all GPIB cards support SRQ enabled interrupts.
*CLS
This command clears all the event registers and the Status Byte register. It does not affect the enable registers. It also clears the error queue.

Chapter 5 Remote Interface Reference
Status System Commands

\section*{The Operation Status Register}

The 3499A/B/C uses only three of the bits in this 16-bit register. Bit 0 indicates the instrument is waiting in the trigger layer (the next trigger event will advance the scan list). Bit 1 indicates the instrument is waiting in the arm layer (the next trigger event will move the instrument to the trigger layer). Bit 4 indicates a scan has started.

\section*{StATus}
:OPERation:CONDition?
Since the condition register is updated in real time, you will generally not use this register query. F or example, bit 4 will never appear to be set since you cannot read the register at the time a scan starts.

\section*{STATus}
: OPERation [: EVENt]?
This query returns the binary weighted sum of the values in the event register. These bits are latched from the condition register and indicate that an event has occurred (at some time since the register was last cleared).

Sending this query clears all bits in the register.
STATus
:OPERation:ENABle <unmask>
: OPERation : ENABle?
These commands work with the enable register. The enable register is a mask used to determine which bits in the event register can be recorded in the OPR summary bit (bit 7) of the Status Byte register.
unmask can range from 0 to 16348, but is only applicable to the 3499A/B/C with the values 1, 2, and 16. F or example sending:

STATus:OPERation:ENABle 16
sets the OPR summary bit in the Status Byte Register to be true (1) when a scan has started.

The query form of this command returns a decimal weighted value indicating the currently set bits in this register.
```

STATus

```
: PRESet
This command clears the Operation Status Register enable register bits. All Enable bits are set to 0 . This command does not affect the other register groups and does not clear the event register.

\section*{The Standard Event Register}

The Standard Event Register reports instrument events, errors, and the * OPC command. The Standard Event Register reports through the ESB bit (bit 5) in the Status Byte Register.
*ESR?
This query returns a decimal weighted value of the event register. The values in this register are as follows:
\begin{tabular}{lcl}
\hline Bit Number & \begin{tabular}{l}
Decimal \\
Value
\end{tabular} & Definition \\
\(\mathbf{0}\) Power On & 1 & \begin{tabular}{l}
Power has been turned on since the last \\
time the register was cleared (read).
\end{tabular} \\
\(\mathbf{1}\) Not Used & 2 & \begin{tabular}{l}
Returns "0". \\
A command syntax error occurred (error \\
numbers in the -100 range).
\end{tabular} \\
\(\mathbf{2}\) Command Error & 4 & \begin{tabular}{l}
An execution error occurred \\
(error numbers in the -200 range).
\end{tabular} \\
\(\mathbf{3}\) Execution Error & 16 & \begin{tabular}{l}
A self test error occurred \\
(error numbers in the -300 range).
\end{tabular} \\
\(\mathbf{4}\) Device Error & 32 & \begin{tabular}{l}
An error during a query \\
(error numbers in the -400 range).
\end{tabular} \\
\(\mathbf{5}\) Query Error & 64 & \begin{tabular}{l}
Returns "0". \\
All commands prior to and including *OPC \\
have been executed.
\end{tabular} \\
\(\mathbf{6}\) Not Used & 128 & Operation Complete
\end{tabular}
```

*ESE <unmask>
*ESE?

```

These commands work with the enable register. The enable register is a mask used to determine which bits in the event register can be recorded in the ESB bit (bit 5) of the Status Byte Register.
unmask can range from 1 to 128 . The query form of this command returns a decimal weighted value indicating the currently set bits in this register.

Chapter 5 Remote Interface Reference

\section*{Status System Commands}

\section*{The Status Byte Register}

The Status Byte Register reports conditions from the other register groups. Data in the 3499A/B/C output buffer is reported on the M AV bit (bit 4). If an event is cleared in one of the other registers, it is also cleared in the Status Byte register. The *CLS command clears the Status Byte register.
*STB?
This query reads the status byte. The returned value is a decimal-weighted summary of the bits in the register.
```

*SRE <value>
*SRE?

```

These commands work with the enable register. The enable register is a mask used to determine which bits in the event register can be summarized to the RQS bit (bit 6) of the Status Byte Register.
valuecan range from 1 to 128 . Thequery form of this command returns a decimal-weighted value indicating the currently set bits in this register.

\section*{System Information Commands}

These commands are used to obtain system-level information.
```

*IDN?

```

This IEEE 488.2 Common Command queries the instrument for the identification string. The returned string will contain the manufacturer identification, the model number, the serial number, and the firmware revision.
```

SYSTem:ERROr?

```

This query returns a variant of the instrument's error queue. Errors are retrieved in first-in-first-out (FIF O) order. The first error returned is the first error stored. See the "Error Messages" chapter on page 165 for the error numbers and messages.

Depending upon your programming environment, this query may return an integer containing the error number, or a variant containing the error number and error message.
When all the errors from the queue are read, the errors are cleared and the ERROR annunciator turns off. When the queue is empty, each following SYSTem:ERRor? query returns: +0, "No error". To clear all error numbers/messages in the queue, execute the *CLS command or power-on the instrument.

The queue holds a maximum of 10 error number/message pairs. If the queue overflows, the last error number/message in the queue is replaced by: -350, "Queue overflow". The least recent error numbers/messages remain in the queue, and the most recent are discarded.

SYSTem:VERSion?
This query returns a string indicating the SCPI version implemented on the mainframe control board. The string is in the form: "Version A.02.00"
```

SYSTem:CTYPE? <slot>

```

This query returns a string containing the module identification in the specified slot. The slot parameter is a decimal ranging from 0 to 9 (mainframe dependent). Valid slot numbers are:
\begin{tabular}{ll}
3499A & slots 0 through 5 \\
3499B & slots 0 through 2 \\
3499C & slots 0 through 9
\end{tabular}

Chapter 5 Remote Interface Reference System Information Commands

The string returned has one of the following forms:
\begin{tabular}{|l|ll|}
\hline Module & Returned String & \\
\hline Empty Slot & NO CARD & 00000 \\
Mainframe & Built-in DIO & 3499, Serial \# \\
N2260A & 40CH MUX & N2260A, Serial \# \\
N2261A & 40CH GP & N2261A, Serial \# \\
N2262A & 4X8 MATRIX & N2262A, Serial \# \\
N2263A & 32BIT DIO & N2263A, Serial \# \\
N2264A & 12+3 (5A) CH GP+16BIT DIO & N2264A, Serial \# \\
N2265A & 4X4 MATRIX +16BIT DIO & N2265A, Serial \# \\
N2266A & 20CH MUX & N2266A, Serial \# \\
N2267A & 8(8A)CH GP & N2267A, Serial \# \\
N2268A & DUAL 1X4 RF MUX & N2268A \\
N2270A & 10(1000V)CH MUX & N2270A, Serial \# \\
N2272A & RF MUX & N2272A \\
N2276A/B & Dual MICROWV MUX & N2276A/B, Serial \# \\
N2280A & QUAD 1X2 OPTICAL & N2280A, Serial \# \\
N2281A & DUAL 1X4 OPTICAL & N2281A, Serial \# \\
N2282A & 1X8 OPTICAL MUX & N2282A, Serial \# \\
44470A & RELAY MUX & \(44470^{\text {a }}\) \\
44470D & RELAY MUX & \(44470^{\text {a }}\) \\
44471A & GP RELAY & \(44471^{\text {b }}\) \\
44471D & GP RELAY & \(44471^{\text {b }}\) \\
44472A & VHF SW & \(44472^{\text {C }}\) \\
44473A & MATRIX SW & 44473 \\
44474A & DIGITAL IO & 44474 \\
44475A & BREADBOARD & 44475 \\
44476A/B & GP RELAY & \(44471^{\text {b }}\) \\
44477A & GP RELAY & \(44471^{\text {b }}\) \\
44478A/B & VHF SW & \(44472^{\text {C }}\) \\
\hline Bon & & \\
\hline
\end{tabular}
a. Both the 44470A/D return "RELAY MUX 44470". You must physically check the module to determine which one is present.
b. All the 44471A/D, 44476A/B and 44477A return "GP RELAY 44471". To determine if the module is an \(44471 \mathrm{~A} / \mathrm{D}, 44476 \mathrm{~A} / \mathrm{B}\) or 44477A, check the switching channels. For 44471 A/D and 44476A/B, you must physically check the modules to determine which one is present.
c. Both the 44478 A/B return "VHF SW 44472 ". You must physically check the module to determine which one is present.

DIAGnostic
[:RELay]: CYCLes? <channel_list>
[:RELay]: CYCLes:MAX? <slot>
[:RELay]:CYCLes:CLEar <channel_list>
The switching plug-in modules count the number of cycles on each relay on the module and store this total count in non-volatile memory on each switch module. Use this feature to track relay failures and predict system maintenance requirements.
This feature is supported by the Agilent N2260A, N2261A, N2262A, N2264A, N2265A, N2266A, N2267A, N2268A, N2270A, N2272A, N2276A, and N2280A/81A/82A modules.

The channel_list parameter has the form @snn, where s is the slot number and \(n n\) is the channel number. The actual channel numbers are module dependent. Channel number for plug-in modules are listed on page 70. The parameter can contain one or more channels as follows:
- a single channel, use (@snn);
- multiple channels, use (@snn,snn...);
- sequential channels, use (@snn:snn);
- groups of sequential channels, use (@snn:snn,snn:snn);
- or any combination of the above.

The channel_list parameter may also contain the tree switching relays (numbered as \(s 98\) and \(s 99\)) for the N2260A and N2266A modules.

The DIAGnostic: RELay:CYCLes? query returns the number of cycles for the specified channel or channels. F or modules or channels that cannot respond to the query, -1 is returned. For multiple channels, the returned value is a series of comma-separated integers in the same order as the channel_list.

The DIAGnostic: RELay: CYCLes: MAX? query returns the maximum relay cycle count for a module in the specified slot. The returned integer value is the maximum relay cycle count among all the relays on the specified module. The returned value does not indicate the channel number with the maximum count.

The DIAGnostic [:RELay]: CYCLes:CLEar command resets the relay cycle counter of the specified channel(s). This command resets the relay cycle count back to zero. Use this command when replacing a relay with a new one.

Chapter 5 Remote Interface Reference System-Level Control Commands

\section*{System-Level Control Commands}

These commands allow you to synchronize the instrument to the bus controller, reset the instrument, and control the display.

\section*{*OPC}
*OPC?
This command and query are used to synchronize the instrument with the bus controller. Use the *OPC command to set the bit in the Standard Event Register (see page 151) if you are using the SCPI status system. The bit is set when the command has finished executing.

Use the *OPC ? query to synchronize the instrument with the bus controller without using the SCPI status system. Append the query to a command. The instrument returns a +1 in response to the query. For example, if you send:
```

ROUTe:CLOSe (@101);*OPC?

```
the instrument will return a +1 when the command has finished executing. N ote that if you use this on a scan command, the return will not happen until the scan is complete (and depending upon your bus controller and the length of the scan list, may cause a time-out).

\section*{*RST}

This command resets the instrument and returns parameters to their default settings. System memory is cleared, digital configuration returns to the default state, and the error queue is cleared. Refer to page 74 for a complete list of the reset conditions.
*TST?
This query begins a self-test and returns a code to indicate the test status. One of the following codes can be returned:
\begin{tabular}{cl}
\begin{tabular}{c}
Returned \\
Value
\end{tabular} & Meaning \\
+0 & all tests have passed. \\
+1 & ROM test failed. \\
+2 & GPIB test failed. \\
+3 & RS-232 test failed. \\
+4 & front-panel test failed.
\end{tabular}

Note that the self test requires several seconds to run. This query will 'hang' the bus until the self test completes.
```

SYSTem:CPON <slot|ALL>

```

This command resets a specific module or all modules in the mainframe. This command will open all switching channels on a module or set all digital I/O ports to input ports. This command has no affect on card pairing or scan configurations.

You can use this command to return a specific module to the power on state. Unlike the *RST command, this command will not reset the mainframe (changing scan lists, scan configurations, digital I/O configurations, or card pairing).

Chapter 5 Remote Interface Reference System-Level Control Commands

DIAGnostic
:DISPlay[:INFOrmation] <message>
:DISPlay:STATe <0|1|OFF|ON>
:DISPlay:STATe?
These commands control the front-panel display.
The DIAGnostic:DISPlay:INFOrmation command is used to write messages to the display. The message parameter is a string that can contain up to 13 characters. You can enter the string in lower case characters, but the display only shows upper case characters. In addition, each character (except the 13th) can be trailed by any one of four special characters (, . : ;). These "trailer" special character are not counted as one of the thirteen characters. Valid characters include:.
\begin{tabular}{ll}
\hline Type & Supported Characters \\
\hline Numeric & \(0-9\) \\
Alphabetic & A-Z \\
Symbolic & "' (space) () \({ }^{*}+-, \ldots ; ; / \backslash\) \\
\hline
\end{tabular}

The DIAGnostic:DISPlay:STATe command turns the front-panel display on or off. The ADRS, RMT, and ERROR annunciators may turn on even when the front-panel display is turned off. After an instrument power-on or a reset command (*RST), the display will be turned on.
The DIAGnostic:DISPlay:STATe? query returns the display status. The returned value is either a " 0 " or a " 1 ", indi cating the display is turned off or on, respectively.

DIAGnostic
:MONitor <slot>|<channel>|<port>|-1
:MONitor?
The DIAGnostic:MONitor command enables the monitor mode for a plug-in module, channel, or port on the specified module. Send the -1 value to disable the monitor mode. Only one slot, one channel, or one port can be monitored each time. More information about monitoring is given on page 80.

For the built-in 4-bit Digital I/O, you may monitor the port (090) or bits (091 to 094). F or the plug-in DIO modules, you may only monitor the 8bit ports.

The Tree Relays (s98, s99) on an N2260A or N2266A cannot be monitored.

The monitor is disabled after an instrument power-on or a reset command.

The DIAGnostic:MONitor? query returns the slot, channel, or port being monitored. The returned value will be a valid slot number or channel address. A "- 1 " is returned if monitor is inactive.
```

SYSMODE <0|1|SCPI|HP3488>
SYSMODE?

```

The 3499A/B/C can be operated in either one of the two system modes: SCPI mode and 3488A mode. The SySmode command specifies the system mode to use. Changing the mode will reset the 3499A/B/C (see page 74), but the RS232 or GPIB settings will not be affected.

If you change modes with this command, you must allow a minimum 5 second interval before performing other operations.

The SYSMODE? query returns a string containing either "SCPI" or "HP3488A".

For information about the 3488 programming mode please visit www.agilent.com.

Chapter 5 Remote Interface Reference
RS-232 Commands

\section*{RS-232 Commands}

These commands only apply to operations with the RS-232 interface.

\section*{SYSTem}
: LOCal
: REMote
: RWLock
The SYSTem: LOCal command sets the local mode for RS-232 operation. All keys on the front-panel are fully functional in this mode.
The SYSTem: REMote command sets the instrument to the remote mode for RS-232 operation. All keys on the front-panel, except Local, View, Mon, Enter, the knob, and the two arrow keys, are disabled.

When the 3499A/B/C has been addressed to listen, the RMT and ADRS annunciators turn on to indicate the instrument is in the Remote mode. The ERROR annunciator turns on whenever an error occurs.

The SYSTem: RWLock command sets the instrument to the remote mode of operation. All keys on the front-panel are disabled in this mode. This command is the same as the SYSTem:REMote command except that all keys on the front-panel are disabled.

\section*{About the SCPI Language}

\section*{Common Commands}

The IEEE 488.2 standard defines the common commands that perform functions such as reset, self-test, status byte query, and so on. Common commands are four or five characters in length, always begin with an asterisk (*), and may include one or more parameters. The command keyword is separated from the first parameter by a space character. Some examples of common commands are shown below:
```

*RST *ESE 32 *STB?

```

\section*{SCPI Command Format}

The SCPI commands perform functions like closing/opening switches, making measurements, querying instrument states or retrieving data. A subsystem command structure is a hierarchical structure that usually consists of a top level (or root) command, one or more lower level commands, and their parameters. The following example shows part of a typical subsystem:
```

[ROUTe:]
CLOSe <channel_list>
SCAN <scan_list>
SCAN:SIZE?

```
[ROUTe:] is the root command, CLOSe and SCAN are second level commands with parameters, and :SIZE? is a third level command.

\section*{Command Separator}

A colon (:) always separates a command from the next lower level command, as shown below:
```

ROUTe:SCAN:SIZE?

```

Colons separate the root command from the second level command (ROUTe: SCAN) and the second level from the third level (SCAN:SIZE?).

\section*{Chapter 5 Remote Interface Reference}

\section*{About the SCPI Language}

\section*{Abbreviated Commands}

The command syntax shows most commands as a mixture of upper and lower case letters. The upper case letters indicate the abbreviated spelling for the command. For shorter program lines, send the abbreviated form. F or better program readability, you may send the entire command. The instrument will accept either the abbreviated or the entire command.

For example, if the command syntax shows ChANnel, then CHAN and CHANNEL are both acceptable forms. Other forms of CHANnel, such as CHANN or CHANNE will generate an error. You may use upper or lower case letters. Therefore, CHANNEL, channel, and ChAnNeL are all acceptable.

\section*{Implied Commands}

Implied commands are those which appear in square brackets ([]) in the command syntax. (Note that the brackets are not part of the command and are not sent to the instrument.) Suppose you send a second level command but do not send the preceding implied command. In this case, the instrument assumes you intend to use the implied command and it responds as if you had sent it. Examinethe partial [ROUTe:] subsystem shown below:
```

[ROUTe:]CLOSe <channel_list>
CLOSe? <channel_list>
SCAN <scan_list>
[:LIST]
:SIZE?

```

The root command [ROUTe:] is an implied command. To close relays in a channel list, you can send either of the following command statements:
```

ROUT:CLOS (@100:107, 201, 20 5)
or
CLOS (@100:107, 201, 205)

```

These commands function the same: closing Channels 0 through 7 in Slot 1 and Channels 1 and 5 in Slot 2.

\section*{Parameters}

These are parameter types used with the SCPI Ianguage:
\(\left.\begin{array}{ll}\hline \text { Parameter Type } & \text { Description } \\
\hline \text { Numeric } & \begin{array}{l}\text { Accepts all commonly used decimal representations of number including } \\
\text { optional signs, decimal points, and scientific notation. }\end{array} \\
& \begin{array}{l}123,123 E 2,-123,-1.23 E 2, .123,1.23 \mathrm{E}-2,1.23000 \mathrm{E}-01 . \\
\text { Special cases include MINimum, MAXimum, and DEFault. }\end{array} \\
\text { Boolean } & \text { Represents a single binary condition that is either true or false. } \\
\text { Discrete } & \text { ON, OFF, 1, 0 }\end{array} \quad \begin{array}{l}\text { Selects from a finite number of values. These parameters use mnemonics to } \\
\text { represent each valid setting. }\end{array}\right\}\)\begin{tabular}{l}
An example is the TRIGger:SOURce <source> command \\
where source can be BUS, EXT, HOLD, or IMM.
\end{tabular}

Parameters shown within square brackets ([]) are optional. (Note that the brackets are not part of the command and are not sent to the instrument.) If you do not specify a value for an optional parameter, the instrument uses the default value. For example, consider the ARM: COUNt? [<MIN|MAX>] command. If you send the command without specifying a parameter, the present ARM: COUNt setting is returned. If you send the MIN parameter, the command returns the minimum count available. If you send the mAX parameter, the command returns the maximum count available. Be sure to place a space between the command and the parameter.

\section*{Linking Commands}

Tolink IEEE 488.2 Common Commands with SCPI Commands, use a semicolon between the commands. F or example:
```

*RST;CONF:EXT:OUTP ON or TRIG:SOUR HOLD;*TRG

```

To link multiple SCPI commands, use both a semicolon and a colon between the commands. F or example:

ARM:COUN 1;:TRIG:SOUR EXT

5

Error Messages

\section*{Error Messages}
- Errors are retrieved in first-in-first-out (FIFO) order. The first error returned is the first error that was stored. Errors are cleared as you read them. When you have read all errors from the queue, the
ERROR annunciator turns off and the errors are cleared. The instrument beeps once each time an error is generated.
- If more than 10 errors have occurred, the last error stored in the queue (the most recent error) is replaced with -350, "Queue overflow". No additional errors are stored until you remove errors from the queue. If no errors have occurred when you read the error queue, the instrument responds with +0 , "No error".
- The error queue is cleared by the *CLS (clear status) command or when power is cycled. The errors are also cleared when you read the queue. The error queue is not cleared by an instrument reset (*RST command) or a card/module reset (SYSTem: CPON command).
- Front-Panel Operation:

If the ERROR annunciator is on, press View, select ERROR, and press Enter. Use the knob to scroll through the error numbers. Press the arrow key (right) to view the text of the error message. All errors are cleared when you exit the menu.

- Remote Interface Operation:

SYSTem:ERRor? Read and clear one error from the error queue.
Errors have the following format (the error string may contain up to 80 characters):
-113, "Undefined header"
\begin{tabular}{|c|c|}
\hline & Execution Errors \\
\hline -101 & \begin{tabular}{l}
Invalid character \\
An invalid character was found in the command string. You may have used an invalid character such as \#, \{ \$, or \% in the command header or within a parameter. \\
Example: OPEN \{@101)
\end{tabular} \\
\hline -102 & \begin{tabular}{l}
Syntax error \\
Invalid syntax was found in the command string. Y ou may have inserted a blank space before or after a col on in the command header, or before a comma. Or you may have omitted the "@" character in the channel list syntax. \\
Examples: ROUT:CHAN: DEL 1 or ROUT:OPEN (101:102)
\end{tabular} \\
\hline -103 & \begin{tabular}{l}
Invalid separator \\
An invalid separator was found in the command string. You may have used a comma instead of a col on, semicolon, or blank space. You omitted a blank space between the SCPI command the first parameter. \\
Example: TRIG: COUNT, 1
\end{tabular} \\
\hline -105 & \begin{tabular}{l}
GET not allowed \\
A Group Execute Trigger (GET) is not allowed within a command string.
\end{tabular} \\
\hline -108 & \begin{tabular}{l}
Parameter not allowed \\
M ore parameters were received than expected for this command. Y ou may have entered an extra parameter or added a parameter to a command that does not require a parameter. \\
Example: ROUT:CLOS:STAT? 2
\end{tabular} \\
\hline -109 & \begin{tabular}{l}
Missing parameter \\
Fewer parameters were received than were expected for this command. You have omitted one or more parameters that are required for this command. \\
Example: ROUT:CHAN:DEL 10,
\end{tabular} \\
\hline -112 & \begin{tabular}{l}
Program mnemonic too long \\
A command header was received which contained more than the maximum 12 characters allowed. \\
Example: CONFIGURE:EXTERNAL:TRIGGER:SOURCE 2
\end{tabular} \\
\hline -113 & \begin{tabular}{l}
Undefined header \\
A command was received that is not valid for this instrument. Y ou may have misspelled the command or it may not be a valid command. If you are using the short form of this command, remember that it may contain up to four letters. \\
Examples: TRIGG:SOUR TIM
\end{tabular} \\
\hline
\end{tabular}

\section*{Chapter 6 Error Messages}

\section*{Execution Errors}

\section*{-121 Invalid character in number}

An invalid character was found in the number specified for a parameter. Example: TRIG:TIMER 12.. 34

Exponent too large
A numeric parameter was found whose exponent was large than 32,000.

\section*{Too many digits}

A numeric parameter was found whose mantissa contained more than 255 digits, excluding leading zeros.
Numeric data not allowed
The wrong parameter type was found in the command string. You may have specified a number where a string or expression was expected, or vice versa.
Examples: DISP:TEXT 5.0 or ROUT:CLOSE 101

\section*{Invalid suffix}

A suffix was incorrectly specified for a numeric parameter. Y ou may have misspelled the suffix.

\section*{Suffix too long}

A header suffix is the number that can be appended to the end of some command headers. This error is generated if the header suffix contains more than 12 characters.

\section*{Suffix not allowed}

A suffix was received following a numeric parameter. You may have misspelled the suffix.

\section*{Character data not allowed}

A discrete parameter was received but a character string or a numeric parameter was expected. Check the list of parameters to verify that you have used a valid parameter type.
Examples: ROUTE:CLOSE CH101 or DIAG:DISP TEXT123 (the string must be enclosed in quotes)
Invalid string data
An invalid character string was recei ved. Check to see if you have enclosed the character string in quotation marks and verify that the string contains valid ASCII characters.
Example: DIAG:DISP 'TESTING (the ending quote is missing)
String data not allowed
A character string was received but is not allowed for this command. Check the list of parameters to verify that you have used a valid parameter type.
\begin{tabular}{|c|c|}
\hline -161 & \begin{tabular}{l}
Invalid block data \\
For a definite-length block, the number of types of data sent does not match the number of bytes that you specified in the block header
\end{tabular} \\
\hline -168 & \begin{tabular}{l}
Block data not allowed \\
Data was sent to the instrument in SCPI definite length block format but this command does not accept this format.
\end{tabular} \\
\hline -178 & \begin{tabular}{l}
Expression data not allowed \\
A channel list was received but is not allowed for this command. \\
Example: SYST:CTYPE? (@100)
\end{tabular} \\
\hline -222 & \begin{tabular}{l}
Data out of range \\
A numeric parameter value is outside the valid range for this command. \\
Example: ARM: COUNT -3
\end{tabular} \\
\hline -223 & \begin{tabular}{l}
Too much data \\
A character string was received but could not be executed because the string length was more than 13 characters. This error can be generated by the DIAGnostic:DISPlay command.
\end{tabular} \\
\hline -224 & \begin{tabular}{l}
Illegal parameter value \\
A discrete parameter was received which was not a valid choice for this command. Y ou may have used an invalid parameter choice. \\
Example: TRIG: SOURCE ALARM (ALARM is not a valid choice)
\end{tabular} \\
\hline -310 & \begin{tabular}{l}
System error \\
A firmware defect has been found. This is not a fatal error but you should contact your nearest Agilent Technologies Service Center (see page 8) if this error is reported.
\end{tabular} \\
\hline -350 & \begin{tabular}{l}
Queue overflow \\
The error queue is full because more than 10 errors have occurred. No additional errors are stored until you remove errors from the queue. The error queue is cleared by the *CLS (clear status) command or when power is cycled. The errors are also cleared when you read the queue.
\end{tabular} \\
\hline -410 & \begin{tabular}{l}
Query INTERRUPTED \\
A command was received which sends data to the output buffer, but the output buffer contained data from a previous command (the previous data is not overwritten). The output buffer is cleared when power has been off or after a bus Device Clear.
\end{tabular} \\
\hline
\end{tabular}

\section*{Chapter 6 Error Messages Instrument Errors}

\section*{Instrument Errors}

Number of SAV/RCL out of range
This error will occur if a number included in *SAV or *RCL is out of range. Up to 50 instrument setups can be stored using Firmware REV 4.0 (numbered 1 to 50). Up to 10 setups can be stored using Firmware REV 1.0/2.0/3.0 (numbered 1 to 10).

Examples: *SAV 52 or *RCL 0
Unable to recall - scan is running
Unable to recall - memory is empty
Unable to recall - modules were changed
Before recalling a stored channel setup, the instrument verifies the same module types are installed in each slot. This error indicates that the instrument has detected one or more modules have been replaced with other module types or have been removed from the instrument.

\section*{Unable to store - scan is running}

\section*{Slot number out of range}

The specified slot number is invalid. The channel number has the form (@snn), where s is the slot number and nn is the channel number.
Example: OPEN (@604)
111
Data out of range
The data for some commands is invalid.
Example: SOUR:DIG:DATA:BYTE:VAL 266 (valid data should be 0-255)

112

113

114

115

Not able to perform requested operation
The requested operation is not valid for the instrument.
Example: FUNC 3, BIWIRE2 (the module in Slot 3 is not an N2260A).
Block name not exist
In the 3499A/B/C a maximum two bl ocks can be defined. The two defined blocks can be read and written, etc. If you read or write a block that has not been previously defined, this error occurs.
Block name already exist
Theinstrument has detected a defined block name, while you are to define it once more.
Two Blocks already exist
The instrument has detected two defined block names while you are to define them once more.
Channel number out of range
The specified channel number is invalid for the module in the selected slot. The channel number has the form (@snn), where s is the slot number and \(n n\) is the channel number.

\section*{Example: ROUT:CLOSE (@156)}

Scan list is empty
Scan initiated
Scan init ignored
Trig ignored
Hardware trigger too fast
Too many channels
Card in use
N2282A execution error
Unable to execute this command in local mode
RS232 data receiving error

\section*{Internal command error}

\section*{RS232 only - unable to execute on GPIB}

There are three commands which are allowd only with the RS-232 interface:
SYSTem:LOCal, SYSTem:REMote, SYSTem:RWLock.

Chapter 6 Error Messages
Self-Test Errors

\section*{Self-Test Errors}

The errors listed below indicate failures that may occur during a self-test (in SCPI mode).
\begin{tabular}{cl}
\hline Error Number & Description \\
\hline+1 & ROM test failed. \\
+2 & GPIB test failed. \\
+3 & RS-232 test failed. \\
+4 & Front-panel test failed. \\
\hline
\end{tabular}

\section*{Note}

The string " +0 " returned from a *TST? command indicates that all the tests have passed. In this case, "PASSED" displays on the front-panel of the instrument.

\section*{7}

Plug-in Modules

\section*{Plug-in Modules}

This chapter provides a general description, simplified schematic, and wiring information for each plug-in module. This chapter contains the following sections:
- N2260A 40-Channel MUX Module, on page 176
- N2261A 40-Channel GP Relay Module, on page 182
- N2262A \(4 \times 8\) 2-Wire Matrix Switch Module, on page 185
- N2263A 32-bit Digital I/O M odule, on page 188
- N2264A Multifunction Module, on page 192
- N2265A Multifunction Module, on page 196
- N2266A 40-Channel MUX Module, on page 200
- N2267A 8-Channel High Current GP Module, on page 206
- N2268A \(50 \Omega\) 3.0 GHz Dual 1-to-4 MUX Module, on page 210
- N2270A 10-Channel High Voltage MUX M odule, on page 212
- N2272A 1 GHz RF 1-to-9 MUX Module, on page 214
- N 2276A Dual 1-to-6(4) M icrowave MUX/Attenuator M odule, on page 217
- N2276B Microwave MUX/Attenuator Module, on page 221
- N2280A Quadruple 1-to-2 Optical Switch Module, on page 225
- N2281A Dual 1-to-4 Optical Switch M odule, on page 226
- N2282A 1-to-8 Optical Switch Module, on page 228
- 44470A 10-Channel MUX M odule, on page 230
- 44470D 20-Channel MUX M odule, on page 233
- 44471A 10-Channel GP Relay Module, on page 236
- 44471D 20-Channel GP Relay Module, on page 239
- 44472A Dual 4-Channel VHF Switch Module, on page 242
- 44473A \(4 \times 4\) 2-Wire Matrix Switch M odule, on page 245
- 44474A 16-Bit Digital I/O M odule, on page 248
- 44475A Breadboard Module, on page 251
- 44476A Microwave Switch Module, on page 257
- 44476B Microwave Switch Module, on page 260
- 44477A Form-C Relay M odule, on page 265
- 44478A/B 1.3 GHz Dual 4-to-1 MUX Modules, on page 267
- Protection Networks, on page 272
- Terminals and Connections Information, on page 275

Note
You should not remove or install modules while the instrument is power on. If a module is accidentally removed or installed while the instrument power is on, the instrument will preform a reset. Reset conditions are described beginning on page 74.

\section*{N2260A 40-Channel MUX M odule}

The Agilent N2260A is a configurable multiplexer (MUX) module. It contains 40 2-wire latching relays for switching, and two non-latching tree relays for configuration.

The N2260A can be configured as:
- an 80-channel 1-wire multiplexer,
- a 40-channel 2-wire multiplexer (default),
- two independent, 20-channel 2-wire multiplexers, or
- a 20-channel 4-wi re multipl exer.

These modes can be selected from the front-panel or with a SCPI command (see page 83).
An instrument power-on or reset will set the N2260A to its default configuration (as a 40-channel 2-wire MUX module).

The N2260A can be operated in either SCPI mode or 3488A mode, but configuration is only possible in the SCPI mode. In 3488A mode, the N2260A can only be used as a 40-channel 2-wire MUX module.
A parallel switching feature makes the N 2260A well suited for high speed switching. The 40 2-wire relays on the N2260A can be separated into four groups and up to 10 relays in the same group can be closed simultaneously (parallel switching). The groups are: group 1 (channel 00 through channel 09), group 2 (channel 10 through channel 19), group 3 (channel 20 through channel 29) and group 4 (channel 30 through channel 39). Additional information about parallel switching is given on page 84.
Specifications for the N2260A are given on page 303.

\section*{N2260A Simplified Schematic}

A simplified schematic of the N2260A is shown below. The 40 2-wire channel relays (\(\mathrm{CH} 00-\mathrm{CH} 39\)) are divided into two banks: BANK 0 and BANK 1. Each bank consists of 20 2-wire switching channels and a common bus (COM 0 \& COM 1). There is also a single-ended common terminal (SE-COM) used when the multiplexer is configured to 80channel 1-wire mode. The two tree relays, T98 and T99, are used to configure the N2260A.

\section*{Chapter 7 Plug-in Modules}

1-WireM ode In this mode, either the High (H) or Lo (L) terminal of a channel is switched to the single-ended (SE-COM) terminal. The Lo terminals form the first 40 1-wire channels (00-39), and the Hi terminals form the second 401 -wire channels (40-79). Only one channel can be closed at a time in the 1-wire mode.

2-WireM ode This is the default mode of the N2260A and provides 40 2wire channels. In this mode, the Hi and Loterminals of a channel are switched to Hi and Lo common terminals (COM0 and COM1). The channels are numbered 00 through 39.

Dual 2-WireMode In this mode, the N2260A is separated into two independent banks (BANK 0 \& BANK 1). Each bank consists of 20 2wire channels and a corresponding common bus, COM 0 and COM 1. The channels in BANK 0 are numbered 00 through 19, and the channels in BANK 1 are numbered 20 through 39.

\section*{Note}
\(\qquad\)
You must modify the PC board to use this mode of operation. The modification is described in the next section.

4-WireM ode In this mode, the two banks (BANK 0 \& BANK 1) are paired to form a 20-channel 4-wire multiplexer. The first channels of each bank (\(\mathrm{CH} 00 \& \mathrm{CH} 20\)) form Channel 00, the second channels of the each bank (CH01\& CH21) form Channel 01, and so on.

\section*{Note}

\section*{Dual 2-Wire Mode - PC Board Modification}

To operate the module in the Dual 2-wire mode, you must make modifications to the module's printed circuit board. Specifically, you must unsolder and remove relay T99. On the PC board, T99 has a reference designator of K340. The location of K 340 is shown below.

\section*{Caution}

You must use proper anti-static procedures, de-soldering techniques, and equipment to prevent damage to the PC board.

Chapter 7 Plug-in Modules

\section*{N2260A Wiring Information}

There are four methods available to connect to the N2260A:
- A screw terminal block, the N2290A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2290A) is shown below. To use the other connection options, you will need to use the module pinout information on page 181.

Connect to P401

N2260A Pinout P401 is a 96-pin male DIN connector mounted on the N2260A. The connector and pin assignments are shown below.

View from the Pin Side of the Connector
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pin \# } & \multicolumn{1}{|c|}{\(\mathbf{A}\)} & \multicolumn{1}{|c|}{\(\mathbf{B}\)} & \multicolumn{1}{c|}{\(\mathbf{C}\)} & \multicolumn{1}{|c|}{ Pin \# } & \multicolumn{1}{c|}{\(\mathbf{A}\)} & \multicolumn{1}{c|}{\(\mathbf{B}\)} & \(\mathbf{C}\) \\
\hline \(\mathbf{1}\) & CH0_L & CH1_L & CH2_L & \(\mathbf{1 7}\) & CH20_L & CH21_L & CH22_L \\
\hline \(\mathbf{2}\) & CH0_H & CH1_H & CH2_H & \(\mathbf{1 8}\) & CH20_H & CH21_H & CH22_H \\
\hline \(\mathbf{3}\) & CH3_L & CH4_L & CH5_L & \(\mathbf{1 9}\) & CH23_L & CH24_L & CH25_L \\
\hline \(\mathbf{4}\) & CH3_H & CH4_H & CH5_H & \(\mathbf{2 0}\) & CH23_H & CH24_H & CH25_H \\
\hline \(\mathbf{5}\) & CH6_L & CH7_L & CH8_L & \(\mathbf{2 1}\) & CH26_L & CH27_L & CH28_L \\
\hline \(\mathbf{6}\) & CH6_H & CH7_H & CH8_H & \(\mathbf{2 2}\) & CH26_H & CH27_H & CH28_H \\
\hline \(\mathbf{7}\) & CH9_L & Not used & COM0_L & \(\mathbf{2 3}\) & CH29_L & Not used & COM1_L \\
\hline \(\mathbf{8}\) & CH9_H & Not used & COM0_H & \(\mathbf{2 4}\) & CH29_H & Not used & COM1_H \\
\hline \(\mathbf{9}\) & CH10_L & CH11_L & CH12_L & \(\mathbf{2 5}\) & CH30_L & CH31_L & CH32_L \\
\hline \(\mathbf{1 0}\) & CH10_H & CH11_H & CH12_H & \(\mathbf{2 6}\) & CH30_H & CH31_H & CH32_H \\
\hline \(\mathbf{1 1}\) & CH13_L & CH14_L & CH15_L & \(\mathbf{2 7}\) & CH33_L & CH34_L & CH35_L \\
\hline \(\mathbf{1 2}\) & CH13_H & CH14_H & CH15_H & \(\mathbf{2 8}\) & CH33_H & CH34_H & CH35_H \\
\hline \(\mathbf{1 3}\) & CH16_L & CH17_L & CH18_L & \(\mathbf{2 9}\) & CH36_L & CH37_L & CH38_L \\
\hline \(\mathbf{1 4}\) & CH16_H & CH17_H & CH18_H & \(\mathbf{3 0}\) & CH36_H & CH37_H & CH38_H \\
\hline \(\mathbf{1 5}\) & CH19_L & Not used & SE-COM & \(\mathbf{3 1}\) & CH39_L & Not used & Not used \\
\hline \(\mathbf{1 6}\) & CH19_H & Not used & SE-COM & \(\mathbf{3 2}\) & CH39_H & Not used & Not used \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2261A 40-Channel GP Relay Module

\section*{N2261A 40-Channel GP Relay Module}

The Agilent N2261A GP Relay M odule contains 40 independent Single Pole-Single Throw (SPST, Form A) latching relays.

If necessary, you can pair two N2261A modules to provide 2-wire switching.
The N 2261A can be operated in one of two modes: single channel break-before-make (BBM) or multiple channels in a closed position.

A parallel switching feature makes the N 2261A well suited for high speed switching. The 40 2-wire relays on the N2261A can be separated into four groups and up to 10 relays in the same group can be closed simultaneously (parallel switching). The groups are: group 1 (channel 00 through channel 09), group 2 (channel 10 through channel 19), group 3 (channel 20 through channel 29) and group 4 (channel 30 through channel 39). Additional information about parallel switching is given on page 84.
Specifications for the Agilent N2261A are given on page 305.

\section*{N2261A Simplified Schematic}

A simplified schematic is shown bel ow. The N2261A contains 40 independent Single Pole-Single Throw (SPST, F orm A) latching relays. A channel refers to an individual relay on the module. Channels are numbered 00 through 39 for the N 2261A.

\section*{N2261A Wiring Information}

There are four methods available to connect to the N2261A:
- A screw terminal block, the N2291A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN 96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2291A) is shown below. To use the other connection options, you will need to use the pinout information on page 184.

Chapter 7 Plug-in Modules
N2261A 40-Channel GP Relay Module

N2261A Pinout P401 is a 96-pin male DI N connector mounted on the N2261A. The connector and pinout assignments are shown below.

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pin \# } & \multicolumn{1}{|c|}{\(\mathbf{A}\)} & \multicolumn{1}{|c|}{\(\mathbf{B}\)} & \multicolumn{1}{c|}{\(\mathbf{C}\)} & \multicolumn{1}{|c|}{\(\operatorname{Pin} \#\)} & \multicolumn{1}{c|}{\(\mathbf{A}\)} & \(\mathbf{B}\) & \(\mathbf{C}\) \\
\hline \(\mathbf{1}\) & CH0_L & CH1_L & CH2_L & \(\mathbf{1 7}\) & CH20_L & CH21_L & CH22_L \\
\hline \(\mathbf{2}\) & CH0_H & CH1_H & CH2_H & \(\mathbf{1 8}\) & CH20_H & CH21_H & CH22_H \\
\hline \(\mathbf{3}\) & CH3_L & CH4_L & CH5_L & \(\mathbf{1 9}\) & CH23_L & CH24_L & CH25_L \\
\hline \(\mathbf{4}\) & CH3_H & CH4_H & CH5_H & \(\mathbf{2 0}\) & CH23_H & CH24_H & CH25_H \\
\hline \(\mathbf{5}\) & CH6_L & CH7_L & CH8_L & \(\mathbf{2 1}\) & CH26_L & CH27_L & CH28_L \\
\hline \(\mathbf{6}\) & CH6_H & CH7_H & CH8_H & \(\mathbf{2 2}\) & CH26_H & CH27_H & CH28_H \\
\hline \(\mathbf{7}\) & CH9_L & Not used & Not used & \(\mathbf{2 3}\) & CH29_L & Not used & Not used \\
\hline \(\mathbf{8}\) & CH9_H & Not used & Not used & \(\mathbf{2 4}\) & CH29_H & Not used & Not used \\
\hline \(\mathbf{9}\) & CH10_L & CH11_L & CH12_L & \(\mathbf{2 5}\) & CH30_L & CH31_L & CH32_L \\
\hline \(\mathbf{1 0}\) & CH10_H & CH11_H & CH12_H & \(\mathbf{2 6}\) & CH30_H & CH31_H & CH32_H \\
\hline \(\mathbf{1 1}\) & CH13_L & CH14_L & CH15_L & \(\mathbf{2 7}\) & CH33_L & CH34_L & CH35_L \\
\hline \(\mathbf{1 2}\) & CH13_H & CH14_H & CH15_H & \(\mathbf{2 8}\) & CH33_H & CH34_H & CH35_H \\
\hline \(\mathbf{1 3}\) & CH16_L & CH17_L & CH18_L & \(\mathbf{2 9}\) & CH36_L & CH37_L & CH38_L \\
\hline \(\mathbf{1 4}\) & CH16_H & CH17_H & CH18_H & \(\mathbf{3 0}\) & CH36_H & CH37_H & CH38_H \\
\hline \(\mathbf{1 5}\) & CH19_L & Not used & Not used & \(\mathbf{3 1}\) & CH39_L & Not used & Not used \\
\hline \(\mathbf{1 6}\) & CH19_H & Not used & Not used & \(\mathbf{3 2}\) & CH39_H & Not used & Not used \\
\hline
\end{tabular}

\section*{N2262A \(4 \times 8\) 2-Wire Matrix Switch Module}

The Agilent N2262A \(4 \times 8\) Matrix module contains 32 2-wire nodes (crosspoints) organized in a 4-row by 8-column configuration. Each node in the matrix contains a 2-wire latching relay for switching both \(\mathrm{Hi}(\mathrm{H})\) and Lo (L) terminals of a signal line. Multiple switches can be closed, allowing any combination of row-to-column connections.
The parallel switching feature makes it well suited for high speed switching applications. Up to 8 2-wire node/crosspoint relays in the same row can be closed all at once (parallel switching).
The N2262A provides a convenient way to connect multiple test instruments to multiple test points on a device or to multiple devices. Multiple N2262A modules can be connected together, or used in conjunction with other modules such as the N2260A 40-Channel MUX to provide a wide variety of switching combinations.

Specifications for the Agilent N2262A are given on page 307.

\section*{N2262A Simplified Schematic}

A simplified schematic is shown below. The N2262A contains 32 2-wire crosspoints organized in a 4-row by 8-column configuration. Each crosspoint relay has a unique two digit channel number mn, where \(m=\) row number (\(0-3\)) and \(n=\) column number (\(0-7\)).

Channel 31 represents the relay at the crosspoint of Row 3 (ROW3) and Column 1 (COL1).

Chapter 7 Plug-in Modules
N2262A 4 x 8 2-Wire Matrix Switch Module

\section*{N2262A Wiring Information}

There are three methods available to connect to the N 2262A:
- A screw terminal block, the N2292A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D25 Cable, the N2298A (described on page 280).

The screw terminal block (N2292A) is shown below. To use the other connection options, you will need to use the pinout information on page 187.

N2262A Pinout P300 is a 96-pin male DIN connector mounted on the N2262A. The connector and pinout assignments are shown below. Note that the \(A\) and \(B\) rows in the connector are not used.

View from the Pin Side of the Connector
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pin \# & C & Pin \# & C & Pin \# & C & Pin \# & C \\
\hline 1 & COLO_L & 9 & Not used & 17 & Not used & 25 & COL4_L \\
\hline 2 & COLO_H & 10 & ROW0_L & 18 & ROW2_L & 26 & COL4_H \\
\hline 3 & COL1_L & 11 & ROW0_H & 19 & ROW2_H & 27 & COL5_L \\
\hline 4 & COL1_H & 12 & Not used & 20 & Not used & 28 & COL5_H \\
\hline 5 & COL2_L & 13 & Not used & 21 & Not used & 29 & COL6_L \\
\hline 6 & COL2_H & 14 & ROW1_L & 22 & ROW3_L & 30 & COL6_H \\
\hline 7 & COL3_L & 15 & ROW1_H & 23 & ROW3_H & 31 & COL7_L \\
\hline 8 & COL3_H & 16 & Not used & 24 & Not used & 32 & COL7_H \\
\hline
\end{tabular}

\section*{N2263A 32-bit Digital I/O M odule}

The Agilent N2263A is a 32-bit digital I/O module. It provides 32 bidirectional data lines (bits) and 3 handshakelines (used for control and handshaking). All lines are TTL compatible. The 32 I/O bits can be addressed as 32 individual 1-bit ports, four independent 8-bit ports, two independent 16 -bit ports, or one 32-bit port.
The four 8-bit ports are completely independent of each other and may be used separately. For example, two of the ports can be used for output operations, while the other two ports are used for input operations. However, all 8 bits in a given port must be either input or output bits (not a combination of input and output).

Five handshaking modes are available for this module. The handshaking modes are described beginning on page 98. Handshaking uses up to three control lines:
- Peripheral Control (PCTL)
- I/O direction (I/O)
- Peripheral Flag (PFLG)

Port and bit numbering is show in the table below. Note that the ports are numbered differently if you are using the 3488 System mode.
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
System \\
Mode
\end{tabular} & \multirow{2}{*}{ 32-Bit Port \# } & \multirow{2}{*}{ 16-Bit Port \# } & 8-Bit Port \# & Bit \# \\
\hline \multirow{3}{*}{ SCPI mode } & \multirow{2}{*}{ PORT 00 } & \multirow{2}{*}{ PORT 00 } & PORT 00 & Bits 0-7 \\
\cline { 4 - 5 } & & & PORT 01 & Bits 8-15 \\
\cline { 4 - 5 } & \multirow{2}{*}{ PORT 02 } & PORT 02 & Bits 16-23 \\
\cline { 4 - 5 } & & & PORT 03 & Bits 24-31 \\
\hline \multirow{3}{*}{ 3488A Mode } & \multirow{2}{*}{ PORT 06 } & \multirow{2}{*}{ PORT 04 } & PORT 00 & Bits 0-7 \\
\cline { 4 - 5 } & & \multirow{2}{*}{ PORT 05 } & PORT 01 & Bits 8-15 \\
\cline { 4 - 5 } & & & PORT 03 & Bits 24-31 \\
\hline
\end{tabular}

Specification for the N 2263A are given on page 309.

\section*{N2263A Simplified Schematic}

The N2263A consists of 32 bidirectional I/O channels, each of which includes digital in and digital out circuits as shown in the simplified schematic below. E ach input has its own pull-up resistor, allowing easy detection of external termination (grounded or open-circuited) status. E ach output driver is capable of sinking an externally-supplied current up to 600 mA , making it possible to control relays without the need for additional driver circuitry.

Chapter 7 Plug-in Modules
N2263A 32-bit Digital I/O Module

\section*{N2263A Wiring Information}

There are four methods available to connect to the N2263A:
- A screw terminal block, the N2293A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2293A) is shown below. To use the other connection options, you will need to use the pinout information on page 191.

Chapter 7 Plug-in Modules N2263A 32-bit Digital I/O Module

N2263A Pinout P702 is a 96-pin male DIN connector mounted on the N2263A. The connector and pinout assignments are shown below.

View from the Pin Side of the Connector
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Pin \# & A & B & C & Pin \# & A & B & C \\
\hline \(\mathbf{1 - 2}\) & Not used & Not used & Not used & \(\mathbf{1 9}\) & BIT16 & BIT17 & BIT18 \\
\hline \(\mathbf{3}\) & BIT0 & BIT1 & BIT2 & \(\mathbf{2 0}\) & GND & GND & GND \\
\hline \(\mathbf{4}\) & GND & GND & GND & \(\mathbf{2 1}\) & BIT19 & BIT20 & BIT21 \\
\hline \(\mathbf{5}\) & BIT3 & BIT4 & BIT5 & \(\mathbf{2 2}\) & GND & GND & GND \\
\hline \(\mathbf{6}\) & GND & GND & GND & \(\mathbf{2 3}\) & BIT22 & BIT23 & GND \\
\hline \(\mathbf{7}\) & BIT6 & BIT7 & GND & \(\mathbf{2 4}\) & GND & GND & GND \\
\hline \(\mathbf{8}\) & GND & GND & GND & \(\mathbf{2 5}\) & BIT24 & BIT25 & BIT26 \\
\hline \(\mathbf{9}\) & BIT8 & BIT9 & BIT10 & \(\mathbf{2 6}\) & GND & GND & GND \\
\hline \(\mathbf{1 0}\) & GND & GND & GND & \(\mathbf{2 7}\) & BIT27 & BIT28 & BIT29 \\
\hline \(\mathbf{1 1}\) & BIT11 & BIT12 & BIT13 & \(\mathbf{2 8}\) & GND & GND & GND \\
\hline \(\mathbf{1 2}\) & GND & GND & GND & 29 & BIT30 & BIT31 & GND \\
\hline \(\mathbf{1 3}\) & BIT14 & BIT15 & GND & \(\mathbf{3 0}\) & GND & GND & GND \\
\hline \(\mathbf{1 4}\) & GND & GND & GND & \(\mathbf{3 1}\) & I/O & PCTL & PFLG \\
\hline \(\mathbf{1 5 - 1 8 ~}\) & Not used & Not used & Not used & \(\mathbf{3 2}\) & GND & GND & GND \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2264A Multifunction Module

\section*{N2264A Multifunction Module}

The Agilent N2264A multifunction module combines a GP relay function, a high-current GP relay function, and a digital input/output function on a single module. It consists of:
- 12-Channel GP relays (non-latching Form-A)
- 3-Channel High-current GP relays (non-latching Form-A), capable of switching up to 5 amps .
- 16-bit Digital I/O

The parallel switching feature makes the module well suited for high speed switching applications. Any 10 of the 15 GP relays on the N2264A can be closed all at once (parallel switching). Additional information about parallel switching is given on page 84.

Five handshaking modes are available for the digital I/O function. The handshaking modes are described beginning on page 98. Handshaking uses up to three control lines:
- Peripheral Control (PCTL)
- I/O direction (I/O)
- Peripheral Flag (PFLG)

Port and bit numbering is show in the table below. Note that the ports are numbered differently if you are using the 3488 System mode.
\begin{tabular}{|l|l|l|l|}
\hline Operating Mode & 16-Bit Port \# & 8-Bit Port \# & Bit \# \\
\hline \multirow{2}{*}{ SCPI mode } & \multirow{2}{*}{ PORT 30 } & PORT 30 & Bits 30-37 \\
\cline { 3 - 4 } & & PORT 31 & Bits 38-45 \\
\hline \multirow{2}{*}{ 3488A Mode } & \multirow{2}{*}{ PORT 32 } & PORT 30 & Bits 30-37 \\
\cline { 3 - 4 } & & PORT 31 & Bits 38-45 \\
\hline
\end{tabular}

Specifications for the N2264A are given on page 310.

\section*{N2264A Simplified Schematic}

A simplified schematic is shown below. There are three independent functions on the N2264A: the 12-channel GP Relay (CH00-11), the 3channel High-current GP Relay (CH20-22), and the 16-bit Digital I/O (bits 30-45).

Chapter 7 Plug-in Modules
N2264A Multifunction Module

\section*{N2264A Wiring Information}

There are four methods available to connect to the N2264A:
- A screw terminal block, the N2294A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2294A) is shown below. To use the other connection options, you will need to use the pinout information given on page 195.

\section*{Caution}

12 pins (6 H and 6 L) are provided for each channel of the 3-Channel High-current GP Relay. Make sure to use ALL 12 pins whenever the switched current exceeds 1 amp.

Chapter 7 Plug-in Modules N2264A Multifunction Module

N2264A Pinout P601 is a 96-pin male DIN connector mounted on the N2264A. The connector and pinout assignments are shown below.

View from the Pin Side of the Connector
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pin \# } & \multicolumn{1}{|c|}{\(\mathbf{A}\)} & \multicolumn{1}{|c|}{\(\mathbf{B}\)} & \multicolumn{1}{|c|}{\(\mathbf{C}\)} & \multicolumn{1}{c|}{ Pin \# } & \multicolumn{1}{c|}{\(\mathbf{A}\)} & \multicolumn{1}{c|}{\(\mathbf{B}\)} & \multicolumn{1}{c|}{\(\mathbf{C}\)} \\
\hline \(\mathbf{1}\) & BIT30 & BIT31 & BIT32 & \(\mathbf{1 7}\) & CH6_L & CH7_L & CH8_L \\
\hline \(\mathbf{2}\) & GND & GND & GND & \(\mathbf{1 8}\) & CH6_H & CH7_H & CH8_H \\
\hline \(\mathbf{3}\) & BIT33 & BIT34 & BIT35 & \(\mathbf{1 9}\) & CH9_L & CH10_L & CH11_L \\
\hline \(\mathbf{4}\) & BIT36 & BIT37 & GND & \(\mathbf{2 0}\) & CH9_H & CH10_H & CH11_H \\
\hline \(\mathbf{5}\) & GND & GND & GND & \(\mathbf{2 1}\) & CH20_L & CH20_L & CH20_L \\
\hline \(\mathbf{6}\) & BIT38 & BIT39 & BIT40 & \(\mathbf{2 2}\) & CH20_L & CH20_L & CH20_L \\
\hline \(\mathbf{7}\) & GND & GND & GND & \(\mathbf{2 3}\) & CH20_H & CH20_H & CH20_H \\
\hline \(\mathbf{8}\) & BIT41 & BIT42 & BIT43 & \(\mathbf{2 4}\) & CH20_H & CH20_H & CH20_H \\
\hline \(\mathbf{9}\) & BIT44 & BIT45 & GND & \(\mathbf{2 5}\) & CH21_L & CH21_L & CH21_L \\
\hline \(\mathbf{1 0}\) & I/O & PCTL & PFLG & \(\mathbf{2 6}\) & CH21_L & CH21_L & CH21_L \\
\hline \(\mathbf{1 1}\) & GND & GND & GND & \(\mathbf{2 7}\) & CH21_H & CH21_H & CH21_H \\
\hline \(\mathbf{1 2}\) & Not used & Not used & Not used & \(\mathbf{2 8}\) & CH21_H & CH21_H & CH21_H \\
\hline \(\mathbf{1 3}\) & CH0_L & CH1_L & CH2_L & \(\mathbf{2 9}\) & CH22_L & CH22_L & CH22_L \\
\hline \(\mathbf{1 4}\) & CH0_H & CH1_H & CH2_H & \(\mathbf{3 0}\) & CH22_L & CH22_L & CH22_L \\
\hline \(\mathbf{1 5}\) & CH3_L & CH4_L & CH5_L & \(\mathbf{3 1}\) & CH22_H & CH22_H & CH22_H \\
\hline \(\mathbf{1 6}\) & CH3_H & CH4_H & CH5_H & \(\mathbf{3 2}\) & CH22_H & CH22_H & CH22_H \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2265A Multifunction Module

\section*{N2265A Multifunction M odule}

The Agilent N2265A is a multifunction module which consists of:
- A \(4 \times 4\) 2-wire Matrix module (16 latching relays) and;
- A 16-bit digital I/O module.

The parallel switching feature makes the matrix portion of this module well suited for high-speed switching applications. Up to eight 2-wire node/crosspoint relays in the same row can be closed all at once (parallel switching). Additional information about parallel switching is given on page 84.

Five handshaking modes are available for the digital I/O function. The handshaking modes are described beginning on page 98. Handshaking uses up to three control lines:
- Peripheral Control (PCTL)
- I/O direction (I/O)
- Peripheral FIag (PFLG)

Port and bit numbering is show in the table below. Note that the ports are numbered differently if you are using the 3488 System mode.
\begin{tabular}{|l|l|l|l|}
\hline Operating Mode & 16-Bit Port \# & 8-Bit Port \# & Bit \# \\
\hline \multirow{2}{*}{ SCPI mode } & \multirow{2}{*}{ PORT 40 } & PORT 40 & Bits 40-47 \\
\cline { 3 - 4 } & & PORT 41 & Bits 48-55 \\
\hline \multirow{2}{*}{ 3488A Mode } & \multirow{2}{*}{ PORT 42 } & PORT 40 & Bits 40-47 \\
\cline { 3 - 4 } & & PORT 41 & Bits 48-55 \\
\hline
\end{tabular}

Specifications for the N2265A are shown on page 313.

\section*{N2265A Simplified Schematic}

A simplified schematic of the N2265A is shown on the next page. The N2265A is separated into two sections: the \(4 \times 4\) 2-wire matrix and the 16-bit digital I/O. A channel on the N2265A refers to an individual crosspoint on the matrix, or an individual bit on the 16-bit digital I/O.

Chapter 7 Plug-in Modules
N2265A Multifunction Module

\section*{N2265A Wiring Information}

There are four methods available to connect to the N2265A:
- A screw terminal block, the N2295A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2295A) is shown below. To use the other connection options, you will need to use the pinout information on page 199.

Chapter 7 Plug-in Modules N2265A Multifunction Module

N2265A Pinout P600 is a 96-pin male DIN connector mounted on the N2265A. The connector and pinout assignments are shown below.

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Pin \# & A & B & C & Pin \# & A & B & C \\
\hline \(\mathbf{1}\) & Not used & Not used & COLO_L & 17 & Not used & Not used & Not used \\
\hline \(\mathbf{2}\) & Not used & Not used & COL0_H & 18 & Not used & Not used & Not used \\
\hline \(\mathbf{3}\) & Not used & Not used & COL1_L & 19 & BIT40 & BIT41 & BIT42 \\
\hline \(\mathbf{4}\) & Not used & Not used & COL1_H & 20 & GND & GND & GND \\
\hline \(\mathbf{5}\) & Not used & Not used & COL2_L & \(\mathbf{2 1}\) & BIT43 & BIT44 & BIT45 \\
\hline \(\mathbf{6}\) & Not used & Not used & COL2_H & 22 & GND & GND & GND \\
\hline \(\mathbf{7}\) & Not used & Not used & COL3_L & \(\mathbf{2 3}\) & BIT46 & BIT47 & GND \\
\hline \(\mathbf{8}\) & Not used & Not used & COL3_H & 24 & GND & GND & GND \\
\hline \(\mathbf{9}\) & Not used & Not used & ROW0_L & 25 & BIT48 & BIT49 & BIT50 \\
\hline \(\mathbf{1 0}\) & Not used & Not used & ROW0_H & 26 & GND & GND & GND \\
\hline \(\mathbf{1 1}\) & Not used & Not used & ROW1_L & 27 & BIT51 & BIT52 & BIT53 \\
\hline \(\mathbf{1 2}\) & Not used & Not used & ROW1_H & 28 & GND & GND & GND \\
\hline \(\mathbf{1 3}\) & Not used & Not used & ROW2_L & 29 & BIT54 & BIT55 & GND \\
\hline \(\mathbf{1 4}\) & Not used & Not used & ROW2_H & \(\mathbf{3 0}\) & GND & GND & GND \\
\hline \(\mathbf{1 5}\) & Not used & Not used & ROW3_L & \(\mathbf{3 1}\) & I/O & PCTL & PFLG \\
\hline \(\mathbf{1 6}\) & Not used & Not used & ROW3_H & \(\mathbf{3 2}\) & GND & GND & GND \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2266A 40-Channel MUX Module

\section*{N2266A 40-Channel MUX M odule}

The Agilent N2266A is a configurable multiplexer (MUX) module. It contains 40 2-wire non-latching relays for switching and two nonlatching tree relays for configuration applications.

The N2266A can be configured as:
- an 80-channel 1-wire multiplexer,
- a 40-channel 2-wire multiplexer (default),
- two independent 20-channel 2-wire multiplexer,
- or a 20-channel 4-wire multiplexer.

These modes can be selected from the front-panel or with a SCPI command (see page 83).
An instrument power-on or reset will set the N2266A to its default configuration as a 40-channel 2-wire MUX module. When instrument power is removed, all relays will open on the multiplexer.

The N2266A can be operated in either SCPI mode or 3488A mode, but configuration is only possible in the SCPI mode. In 3488A mode, the N2266A can only be used as a 40-channel 2-wire MUX module.

A parallel switching feature makes the N 2266A well suited for high speed switching. The 40 2-wire relays on the N2266A can be separated into four groups and up to 10 relays in the same group can be closed simultaneously (parallel switching). The groups are: group 1 (channel 00 through channel 09), group 2 (channel 10 through channel 19), group 3 (channel 20 through channel 29) and group 4 (channel 30 through channel 39). Additional information about parallel switching is given on page 84.

Specifications for the N2266A are given on page 315.

\section*{N2266A Simplified Schematic}

The 40 2-wire channel relays (\(\mathrm{CH} 00-\mathrm{CH} 39\)) are divided into two banks:
BANK 0 and BANK 1. Each bank consists of 20 2-wire switching channels and a common bus (COM \(0 \&\) COM 1). There is also a singleended common terminal (SE-COM) used when the multiplexer is configured to 80-channel 1-wire mode. The two tree relays, T98 and T99, are used to configure the N2260A.

1-WireM ode In this mode, either the High (H) or Low (L) terminal of a channel is switched to the single-ended (SE-COM) terminal. The Low terminals form the first 40 1-wire channels (00-39), and the High terminals form the second 40 1-wire channels (40-79). Only one channel can be closed at a time in the 1-wire mode.

\section*{Note}

Only one channel can be closed at a time in the 1-wire mode.
2-WireM ode This is the default mode of the N2266A and provides 40 2wire channels. In this mode, the Hi and Loterminals of a channel are switched to Hi and Lo common terminals (COM 0 and COM1). The channels are numbered 00 through 39.

Dual 2-WireMode In this mode, the N2266A is separated into two independent banks (BANK 0 \& BANK 1). Each bank consists of 20 2wire channels and a corresponding common bus, COM 0 and COM 1 . The channels in BANK 0 are numbered 00 through 19, and the channels in BANK 1 are numbered 20 through 39.

\section*{Note}

You must modify the PC board to use this mode of operation. The modification is described in the next section.

4-WireM ode In this mode, the two banks (BANK 0 \& BANK 1) are paired to form a 20-channel 4-wire multiplexer. The first channels of each bank (\(\mathrm{CH} 00 \& \mathrm{CH} 20\)) form Channel 00, the second channels of the each bank (\(\mathrm{CH} 01 \& \mathrm{CH} 21\)) form Channel 01, and so on.

\section*{Note}

An instrument power-on or reset will set the N2266A to its default configuration as a 40-channel 2-wire MUX module. When powered off, all channels are opened.

\section*{Dual 2-Wire Mode - PC Board Modification}

To operate the module in the Dual 2-wire mode, you must make modifications to the module's printed circuit board. Specifically, you must unsolder and remove relay T99. On the PC board, T99 has a reference designator of KT240. The location of KT240 is shown below.

\section*{Caution}

You must use proper anti-static procedures, de-soldering techniques, and equipment to prevent damage to the PC board.

Chapter 7 Plug-in Modules

\section*{N2266A Wiring Information}

There are four methods available to connect to the N2266A:
- A screw terminal block, the N2296A (described on page 277).
- A direct wiring (insulation displacement) connector, the N2296A (described on page 278).
- A DIN96 to twin D50 Cable, the N2297A (described on page 279).
- A DIN96 to four D25 Cable, the N2299A (described on page 281).

The screw terminal block (N2290A) is shown below. To use the other connection options, you will need to use the pinout information on page 205.

N2266A Pinout P401 is a 96-pin male DIN connector mounted on the N2266A. The connector and pin assignments are shown below.

View from the Pin Side of the Connector
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pin \# & A & B & C & Pin \# & A & B & C \\
\hline 1 & CHO_L & CH1_L & CH2_L & 17 & CH20_L & CH21_L & CH22_L \\
\hline 2 & CHO _H & CH1_H & CH2_H & 18 & CH20_H & CH21_H & CH22_H \\
\hline 3 & CH3_L & CH4_L & CH5_L & 19 & CH23_L & CH24_L & CH25_L \\
\hline 4 & CH3_H & CH4_H & CH5_H & 20 & CH23_H & CH24_H & CH25_H \\
\hline 5 & CH6_L & CH7_L & CH8_L & 21 & CH26_L & CH27_L & CH28_L \\
\hline 6 & CH6_H & CH7_H & CH8_H & 22 & CH26_H & CH27_H & CH28_H \\
\hline 7 & CH9_L & Not used & COM0_L & 23 & CH29_L & Not used & COM1_L \\
\hline 8 & CH9_H & Not used & COMO_H & 24 & CH29_H & Not used & COM1_H \\
\hline 9 & CH10_L & CH11_L & CH12_L & 25 & CH30_L & CH31_L & CH32_L \\
\hline 10 & CH10_H & CH11_H & CH12_H & 26 & CH30_H & CH31_H & CH32_H \\
\hline 11 & CH13_L & CH14_L & CH15_L & 27 & CH33_L & CH34_L & CH35_L \\
\hline 12 & CH13_H & CH14_H & CH15_H & 28 & CH33_H & CH34_H & CH35_H \\
\hline 13 & CH16_L & CH17_L & CH18_L & 29 & CH36_L & CH37_L & CH38_L \\
\hline 14 & CH16_H & CH17_H & CH18_H & 30 & CH36_H & CH37_H & CH38_H \\
\hline 15 & CH19_L & Not used & SE-COM & 31 & CH39_L & Not used & Not used \\
\hline 16 & CH19_H & Not used & SE-COM & 32 & CH39_H & Not used & Not used \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2267A 8-Channel High Current GP Module

\section*{N 2267A 8-Channel High Current GP M odule}

The Agilent N2267A is an 8-Channel High Current GP module typically used in mobile phone battery test applications. It can switch up to 8 A at 250 Vac or 5 A at 30 Vdc , with decreasing current to 1 A at 125 Vdc .

The module includes temperature control and protection circuitry, designed to prevent the module temperature from rising too high. The N2267A can potentially be switching up to 64 A (8 channels at 8 A). The temperature control circuitry prevents dangerous overheating.

The 8 channels of the N2267A are independent, more than one channel can be closed or opened at the same time.

\section*{Caution} will damage the N2267A module and possibly the system.

Specifications for the N2267A are given on page 317.

\section*{Temperature Control}

The temperature control circuitry includes two sensor ICs and a cooling fan. When the temperature of the N2267A reaches \(45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)\), the cooling fan on the module turns on. If the temperature drops bel ow \(40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\), the fan turns off.

\section*{Over-temperature Protection}

If the module temperature rises to \(75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)\), all channels on the module are opened and a TTL-level warning output (connected via SMB) on the rear panel will change from high to low. This output can be used to drive an external LED or buzzer. The warning output will reset (change from low to high) when the module temperature drops below \(59^{\circ} \mathrm{C}\left(138^{\circ} \mathrm{F}\right)\).

The over-temperature protection is controlled by hardware logic on the module. Therefore, if the over-temperature protection has opened all the channels on the module, the mainframe front-panel and system memory will still indicate the original state of the channels. To regain control of the channels, you must cycle the power to the module (reset and channel commands will not work). Note that cycling power to regain control will only work if the module temperature has dropped below \(59^{\circ} \mathrm{C}\left(138^{\circ} \mathrm{F}\right)\) otherwise the protection circuitry will be activated again.

\section*{Protection Network}

The module circuit board contains provisions to allow you to mount relay protection circuits. I nductive loads may exhi bit large transient currents that can damage the relay contacts. The type of protection and component values are determined by the loads being switched. More detailed information about protection circuits is given on page 272.

The N2267A circuit board has a provision to allow you to install protection networks in the relay paths. The figure below shows the locations on the main circuit board.

Channel 00
Channel 07

Chapter 7 Plug-in Modules

\section*{N2267A 8-Channel High Current GP Module}

\section*{N2267A Simplified Schematic}

A simplified schematic is shown below. The N2267A consists of eight independent high current channels, each containing a Single PoleSingle Throw (SPST) N ormally Open (F orm A) relay.

\section*{N2267A Wiring Information}

The N2267A rear panel has two connectors: an SMB for the overtemperature warning signal, and a 16-pin male connector for connections to the relay contacts.

The 16-pin connector on the rear-panel is an AMP Metrimate In-Line Connector: Right Angle Header 207544-1.

An Agilent N2327A terminal block can be used to make the connections to the N2267A. Included in the N2327A are an AM P M etrimate In-Line Connector: Plug, 207542-1 and an AMP Contact Type III Socket AWG1814, 66360-2. Refer to page 282 for more information about the N2327A.

\section*{WARNING}

Voltages greater than \(30 \mathrm{Vrms}, 42 \mathrm{Vpk}\) or 60 Vdc present an el ectric shock hazard. Disconnect source voltages before removing or connecting the source-to-modulel/ O connector or wiring the connector. All field wiring must be rated for thehighest voltage applied to any single channel.

N2267A Pinout J 200 is a 16-pin male connector mounted on the rear panel of the N2267A. The pinout assignments are shown below.
\begin{tabular}{|c|l|c|l|}
\hline Pin\# & Signal Name & Pin\# & Signal Name \\
\hline \(\mathbf{1}\) & CH7_H & \(\mathbf{9}\) & CH3_H \\
\(\mathbf{2}\) & CH7_L & \(\mathbf{1 0}\) & CH3_L \\
\(\mathbf{3}\) & CH6_H & \(\mathbf{1 1}\) & CH2_H \\
\(\mathbf{4}\) & CH6_L & \(\mathbf{1 2}\) & CH2_L \\
\(\mathbf{5}\) & CH5_H & \(\mathbf{1 3}\) & CH1_H \\
\(\mathbf{6}\) & CH5_L & \(\mathbf{1 4}\) & CH1_L \\
\(\mathbf{7}\) & CH4_H & \(\mathbf{1 5}\) & CH0_H \\
\(\mathbf{8}\) & CH4_L & \(\mathbf{1 6}\) & CH0_L \\
\hline
\end{tabular}

Over-temperaturePinout J 103 is an SMB connector mounted on the rear panel of the N 2267A. The center conductor is a TTL signal. The shield is connected to the module ground.

Chapter 7 Plug-in Modules
N2268A 50 3 3.0 GHz Dual 1-to-4 MUX Module

\section*{N 2268A \(50 \Omega 3.0\) GHz Dual 1-to-4 M U X M odule}

The Agilent N2268A consists of two, independent, 1-to-4 M UX switches (GROUP 00 and GROUP 10) that provide bidirectional switching. The latching relays in this module are configured in a "tree" structure to provide isolation and low VSWR (voltage standing wave ratio). E ach channel in this module can switch up to 30 Vdc or peak ac at frequencies from dc to 3.0 GHz .

Specifications for the N2268A are given on page 319.

\section*{N2268A Simplified Schematic}

A simplified schematic is shown on the next page. The N2268A contains two 1-to-4 MUXs, designated as GROUP 00 and GROUP 10. The two groups are isolated from each other. Each 1-to-4 multiplexer consists of three form-C relays. A tree relay is connected to the common channel. The two channel relays allow selection of one of the four channel in each group. Channels in each group are break-before-make and are numbered as 00 through 03 for GROUP 00 and 10 through 13 for GROUP 10.

One channel in each group is connected to the common terminals. By default, COM00 is connected to CH 00 and COM10 is connected to CH 10.

\section*{N2268A Wiring Information}

The rear panel of the N2268A is shown below. Use male SMA connectors to connect external signals to the N2268A module.

Chapter 7 Plug-in Modules
N2270A 10-Channel High Voltage MUX Module

\section*{N 2270A 10-Channel High Voltage M U X M odule}

The Agilent N2270A is a 10-Channel 2-wire High Voltage multiplexer typically used in the semiconductor test field. The Maximum Switching Voltage is 1000 V peak, and the Maximum Switching Power is 10 W.

The module has a metal shell to minimize interference while switching high voltage.
Specifications for the N2270A are given on page 321.

\section*{WAR NING}

Hazardous vol tages may exist on the wiring and connectors. DO NOT remove or install the module or themodule connector until all external voltages have been removed.

\section*{N2270A Simplified Schematic}

A simplified schematic is shown bel ow. The N2270A consists of 10 2-wire channels and a common bus. The 10 channels of the N2270A are numbered from 00 through 09 (CH0 through CH 9).

\section*{N2270A Wiring Information}

The 28-pin connector on the rear panel is an AMP 1800V Plug Connector 205689-2.

An Agilent N2320A terminal block can be used to wire external high voltage signals to the N2270A. Included in the N2320A are an AMP 1800V Receptacle Connector, 205690-2 and an AMP AWG24-20 Socket 66399-4. The connector has a metal strain relief and you must make sure to use additional insulation around the wires to prevent the wire insulation being cut, broken or otherwise damaged at the strain relief clamp. Refer to page 283 for more information about the N 2320A.

\section*{WARNING}

Voltages greater than \(30 \mathrm{Vrms}, 42 \mathrm{Vpk}\) or 60 Vdc present an electric shock hazard. Disconnect source voltages before removing or connecting the sourceto-modulel/ O connector or wiring the connector. All field wiring must be rated for thehighest voltage applied to any channel.

N2270A Pinout The pinout assignments are shown below.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & \begin{tabular}{l}
Column \\
\(\mathbf{1}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{2}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{3}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{4}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{5}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{6}\)
\end{tabular} & \begin{tabular}{l}
Column \\
\(\mathbf{7}\)
\end{tabular} \\
\hline Row1 & CH2_H & CH3_H & CH4_H & Not Used & CH5_H & CH6_H & CH7_H \\
\hline Row2 & CH2_L & CH3_L & CH4_L & Not Used & CH5_L & CH6_L & CH7_L \\
\hline Row3 & CH0_H & CH1_H & Not Used & COM_H & Not Used & CH8_H & CH9_H \\
\hline Row4 & CH0_L & CH1_L & Not Used & COM_L & Not Used & CH8_L & CH9_L \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2272A 1 GHz RF 1-to-9 MUX Module

\section*{N2272A 1 GHz RF 1-to-9 MUX Module}

The Agilent N2272A is a 1 GHz RF 1-to-9 Multiplexer well suited for use in RF test and measurement applications. Seven channels are standard branch channels. One channel, CH08, has smaller insertion loss and lower VSWR and can be used either as standard branch channel or an auxiliary channel.
Using the auxiliary channel, CH08, multiple N2272A modules can be cascaded to form larger RF multiplexers while minimizing performance degradation. F or example, by connecting CH 08 to the COM of a second N2272A, a 17:1 multiplexer can be configured. Adding another N2272A to channel 8 of the second N2272A allows a 25:1 multiplexer to be configured, and so on.

Only one channel can be closed at a time. The Agilent N2272A does not support the OPEN command (one channel must always be closed). Closing a channel opens any other closed channel.

Note The Agilent N2272A can only be used with the SCPI M ode of 3499 Firmware Revision 3.0 or later. See page 59 for details about the firmware revisions.

Specifications for the N2272A are given on page 323.

\section*{N2272A Simplified Schematic}

A simplified schematic is shown below. The N2272A consists of series of latching RF relays arranged in a tree structure. One common channel (COM) and nine branch channels (numbered as CH 00 through CH 08) are included in the N2272A. CH08 is also called an auxiliary channel and can be used to expand channel count by connecting to another N2272A. CH08 passes through only one relay and has a very short PC board trace to provide smaller insertion loss and lower VSWR than the other channels. Only one channel can be closed at a time. In addition to the channel relays, you can also query the relay cycle count of the tree relays (T96, T97, T98, and T99).

\section*{N2272A Wiring Information}

The rear panel of the N2272A contains 10 female BNC connectors.

Chapter 7 Plug-in Modules
N2272A 1 GHz RF 1-to-9 MUX Module

\section*{Connecting Multiple N2272A's}

The figure below illustrates how to connect two or more N2272A's together to form larger channel count multiplexers. Additional N2272A's are added by connecting each COM to the low insertion Ioss/low VSWR auxiliary channel on the first N2272A. The example below, shows a 1-to16 multiplexer. Channel 00 through 07 are on the first N2272A, and channel 08 through 15 are on the second N2272A. Switch the first N2272A COM to AUX/08 to access the second bank of multiplexer channels. Additional multiplexers can be added as necessary.

You can also connect multiple N2272A's in a tree structure to implement high channel count multiplexers, however, this configuration will cause signal delays.

\section*{N2276A Dual 1-to-6(4) Microwave MUX/ Attenuator Module}

The Agilent 2276A contains microwave switch and attenuator driver circuits. The microwave switches or attenuators can be mounted to the rear panel of the module or connected with an auxiliary cable for convenience. Several microwave switches and attenuators are available for use with the module.

The N2276A is preconfigured in one of two options:
\begin{tabular}{lll}
\hline Option & Configuration & Switches Used \\
204 & Dual 1-to-4 up to 20 GHz & 87104 B \\
206 (default) & Dual 1-to-6 up to 20 GHz & 87106 B \\
\hline
\end{tabular}

The N2276A is a three slot module and cannot be used in the 3499B two-slot mainframe.

Due to the drive circuitry, each N2276A causes about 0.5 second's delay during power up. Your 3499A/C may seem to turn on slower after you add N2276A modules.

An 8-bit DIP switch on the module sets the configuration for the switches and attenuators. F our connectors are located on the module; two 16-pin connectors (labeled as switch0 \& switch1) for connecting switches and two 10-pin connectors (labeled as attenuator0 \& attenuator 1) for connecting attenuators.

Note
The Agilent N2276A can only be used with the SCPI M ode of 3499A/C Firmware Revision 3.0 or later. See page 59 for details about the firmware revisions.

Caution
The driving circuitry of the module is capacitive. Turn off power before installing or removing the module, switches, or attenuators.

Specifications for the N2276A are given on page 325.

Chapter 7 Plug-in Modules
N2276A Dual 1-to-6(4) Microwave MUX/Attenuator Module

Up to two attenuators can be added to the N2272A using provided ribbon cables. The following attenuators (user provided) are available from Agilent:

\section*{External Attenuators (up to two may be used)}

0 to 11 dB in 1 dB steps
Agilent 84904 K up to 26.5 GHz
Agilent 84904L up to 40 GHz
0 to 90 dB in 10 dB steps
Agilent 84906 K up to 26.5 GHz
Agilent 84906L up to 40 GHz
0 to 70 dB in 10 dB steps
Agilent 84907 K up to 26.5 GHz
Agilent 84907L up to 40 GHz

\section*{N2276A Simplified Schematic}

The simplified schematic below shows the Agilent 87106B 1-to-6 microwave switch (option 206) as used in the Agilent N2276A. Please refer to the switch or attenuator data sheets for information specific to each switch and attenuator.

Only one channel in a switch may be closed at a time. Closing a channel will open any previously closed channel.

7

\section*{Configuration}

An 8-bit DIP switch (labeled S100) on the N2276A is used to configure the switches and optional attenuators. The following table shows specific configurations. If the 8-bit DIP switch's configuration does not match the switches or attenuators installed, errors or unexpected results will occur.

S100

\(01 \quad 00 \quad 01 \quad 00\)
Attenuator Switch
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{2}{*}{ Bit Setting } & Attenuator 1 & Attenuator 0 & Switch 1 & Switch 0 \\
\cline { 2 - 5 } & Bit 7- 6 & Bit 5-4 & Bit 3- 2 & Bit 1- 0 \\
\hline \(\mathbf{0 0}\) & None & None & None & None \\
\hline \(\mathbf{0 1}\) & \(84904 \mathrm{~K} / \mathrm{L}\) & \(84904 \mathrm{~K} / \mathrm{L}\) & \(87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) & \(87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) \\
\hline \(\mathbf{1 0}\) & \(84906 \mathrm{~K} / \mathrm{L}\) & \(84906 \mathrm{~K} / \mathrm{L}\) & \(87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) & \(87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) \\
\hline \(\mathbf{1 1}\) & \(84907 \mathrm{~K} / \mathrm{L}\) & \(84907 \mathrm{~K} / \mathrm{L}\) & Reserved & Reserved \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules

\section*{N2276A Dual 1-to-6(4) Microwave MUX/Attenuator Module}

\section*{N2276A Wiring Information}

All the microwave switches for the N2276A have SMA female connectors. For the attenuators, each standard 84904/6/7L model offers two female 2.4 mm connectors and each 84904/6/7L model with option 006 has two female 2.92 mm connectors (compatible with SMA connectors). When using 84904/6/7L series attenuators, be sure to order them with option 006 (SMA compatible) for wiring convenience.

The default ribbon cable for connecting attenuators to N 2276A/B is 1.5 m in length. A 1.5 m length ribbon cable for connecting microwave switches to the switch connectors on the N2276A is available as Agilent part number N2276-61003. This cable permits the microwave switches to be placed in a convenient location.

N 2276B M icrowave M U X/A ttenuator M odule
The Agilent N2276B contains microwave switch and attenuator driver circuits. The microwave switches or attenuators can be mounted to the rear panel of the module or connected with an auxiliary cable for convenience.

The N2276B is shipped without any switches, allowing for custom configuration. Several microwave switches and attenuators are available for use with the module.

The N2276B is a three slot module and cannot be used in the 3499B twoslot mainframe.

Due to the drive circuitry, each N2276B causes about 0.5 second's delay during power up. Your 3499A/C may seem to turn on slower after you add N2276B modules.

An 8-bit DIP switch on the module sets the configuration for the switches and attenuators. F our connectors are located on the module; two 16-pin connectors (labeled as switch0 \& switch1) for connecting switches and two 10-pin connectors (labeled as attenuator0 \& attenuator1) for connecting attenuators.
\begin{tabular}{ll}
Note & \begin{tabular}{l}
The Agilent N2276B can only be used with the SCPI M ode of 3499A/B/C \\
\\
\\
Firmware Revision 3.0 or later. See page 59 for details about the \\
firmware revisions.
\end{tabular} \\
\hline Caution & \begin{tabular}{l}
The driving circuitry of the module is capacitive. Turn off power before \\
installing or removing the module, switches, or attenuators.
\end{tabular}
\end{tabular}

Specifications for the N2276B are given on page 325.

Chapter 7 Plug-in Modules
N2276B Microwave MUX/Attenuator Module

The following switches and attenuators are available from Agilent:
Switches (1x4) SP4T
Agilent 87104A dc to 4 GHz
Agilent 87104B dc to 20 GHz
Agilent 87104C dc to 26.5 GHz
Switches (1x6) SP6T
Agilent 87106A dc to 4 GHz
Agilent 87106B dc to 20 GHz
Agilent 87106C dc to 26.5 GHz
External Attenuators (up to two may be used)
0 to 11 dB in 1 dB steps
Agilent 84904 K up to 26.5 GHz
Agilent 84904L up to 40 GHz
0 to 90 dB in 10 dB steps
Agilent 84906K up to 26.5 GHz
Agilent 84906L up to 40 GHz
0 to 70 dB in 10 dB steps
Agilent 84907K up to 26.5 GHz
Agilent 84907L up to 40 GHz

\section*{Configuration}

An 8-bit DIP switch (labeled S100) on the N2276B is used to configure optional switches and attenuators. The following table shows specific configurations. If the 8-bit DIP switch's configuration does not match the switches or attenuators installed, errors or unexpected results will occur.

S100

Attenuator Switch
\begin{tabular}{|l|l|l|l|l|}
\hline \multirow{2}{*}{ Bit Setting } & Attenuator 1 & Attenuator 0 & Switch 1 & Switch 0 \\
\cline { 2 - 5 } & Bit 7- 6 & Bit 5- 4 & Bit 3- 2 & Bit 1- 0 \\
\hline \(\mathbf{0 0}\) & None & None & None & None \\
\hline \(\mathbf{0 1}\) & \(84904 \mathrm{~K} / \mathrm{L}\) & \(84904 \mathrm{~K} / \mathrm{L}\) & \(87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) & \(87104 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) \\
\hline \(\mathbf{1 0}\) & \(84906 \mathrm{~K} / \mathrm{L}\) & \(84906 \mathrm{~K} / \mathrm{L}\) & \(87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) & \(87106 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) \\
\hline \(\mathbf{1 1}\) & \(84907 \mathrm{~K} / \mathrm{L}\) & \(84907 \mathrm{~K} / \mathrm{L}\) & Reserved & Reserved \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
N2276B Microwave MUX/Attenuator Module

\section*{N2276B Wiring Information}

All the microwave switches for the N2276B have SMA female connectors. For the attenuators, each standard 84904/6/7L model offers two female 2.4 mm connectors and each 84904/6/7L model with option 006 has two female 2.92 mm connectors (compatible with SMA connectors). When using 84904/6/7L series attenuators, be sure to order them with option 006 (SMA compatible) for wiring convenience.
The default ribbon cable for connecting attenuators to N2276B is 1.5 m in length. The default ribbon cable for connecting switches to N 2276B is 1.5 m in length. A 1.5 m length ribbon cable for connecting microwave switches to the switch connectors on the N2276B is available as Agilent part number N2276-61003. This cable permits the mi crowave switches to be placed in a convenient location.

\section*{N2280A Quadruple 1-to-2 Optical Switch Module}

The Agilent N 2280A M odule contains four 1-to-2 optical switches. All four optical switches are non-latching. For each switch, only one channel can be closed at a time. Closing a channel will open the other channel in the same switch. After power on or a reset, the common channel of each 1-to-2 optical switch is connected to the second channel by default.

Specifications for the N2280A are given on page 326.

\section*{N2280A Simplified Schematic}

A simplified schematic is shown below. The N2280A consists of four independent 1-to-2 optical switches. Each optical switch has one COMx and two branch channels named Chx0 and Chx1.

\section*{N2280A Wiring Information}

Use SC/APC connectors to connect external opti cal signals to the N2280A module. The rear panel of the N2280A is shown below.

Chapter 7 Plug-in Modules
N2281A Dual 1-to-4 Optical Switch Module

\section*{N2281A Dual 1-to-4 Optical Switch M odule}

The Agilent N2281A M odule consists of two 1-to-4 optical switches. The two optical switches are non-latching. For each switch, only one channel can be closed at a time. Closing one channel will open the other channel in the same switch. After power on or a reset, the common channel of each 1-to-4 optical switch is connected to the third channel by default.

Specifications for the N2281A are given on page 327.

\section*{N2281A Simplified Schematic}

A simplified schematic is shown below. The Agilent N2281A consists of two independent 1-to-4 optical switches. Channels are numbered as 00, \(01,02,03\) for COM 0 and 10, 11, 12, 13 for COM1. The third channel of each 1-to-4 optical switch is connected to the common channel by default.

Powered State

Chapter 7 Plug-in Modules

\section*{N2281A Wiring Information}

Use SC/APC connectors to connect external optical signals to the N2281A module. The rear panel is shown below.

\section*{N2282A 1-to-8 Optical Switch Module}

The Agilent N2282A Optical Switch contains a latching 1-to-8 optical switch. Only one channel at a time may be closed. The N2282A does not support the OPEN command. Closing a channel will open any previously closed channels. A special, virtual channel is included that allows all channels in the switch to be opened.
Channels are numbered as CH 00 through CH 08 . CH 00 through CH 07 are standard channels. CH 08 is a special channel used when programming to open all other channels (CH00 through CH07). The latching characteristic of the optical switch makes it hold its most recently state after powered off.
Specifications for the N2282A are given on page 328.

\section*{Note}

The Agilent N2282A can only be used with the SCPI M ode of 3499 Firmware Revision 3.0 or later. See page 59 for details about the firmware revisions.

\section*{N2282A Simplified Schematic}

A simplified schematic is shown on the next page. The N2282A consists of one 1-to-8 optical switch whose channels are numbered as CH 00 through CH 07 and a special channel, CH 08 , with no external connection.

Chapter 7 Plug-in Modules

CH00 through CH07 are opened when a ROUTe: CLOSe (\(\mathrm{Cl}_{\mathrm{x} 08 \text {) }}\) command is sent (where \(x\) is the slot number containing the N2282A).

\section*{N2282A Wiring Information}

Use SC/APC connectors for wiring external optical signals to the N2282A module. The rear panel is shown below.

\section*{Note}

The Agilent N2282A module extends an additional 8.5 cm beyond the rear panel of the 3499A/B/C mainframe.

Chapter 7 Plug-in Modules
44470A 10-Channel MUX Module

\section*{44470A 10-Channel MUX M odule}

The Agilent 44470A Relay Multiplexer (MUX) provides 10 2-wire channels (latching relays) to switch both \(\mathrm{Hi}(\mathrm{H})\) and Lo(L) input signal lines to a common bus. Relays on this module are rated at a maximum voltage of 250 volts with a maximum current of 2 amps dc or ac rms.
The module exhibits low thermal offset characteristics, making it ideal for precision low-level measurements. However, since no thermocouple compensation is included, temperature measurement errors may occur if you use this module to switch thermocouples.
The 44470A can be operated in either of two modes, single channel break-before-make (BBM), or multiple channels closed at the sametime.
Specifications for the 44470A are given on page 329.

\section*{44470A Simplified Schematic}

A simplified schematic of the 44470A is shown below. The 44470A consists of 10 2-wire relay channels that may be connected to a common bus. Channels on the 44470A are numbered as 00 through 09 (CH00 through CH09).

\section*{Custom Signal Conditioning}

The 44470A circuit board has provision that allow you to install simple attenuators or filter networks. Three circuit pads in each relay path are provided that allow you to install components in the signal Hi path, Lo path, or as a shunt from Hi to Lo. The figure below shows the 44470A circuit board locations where components can be installed.

Chapter 7 Plug-in Modules
44470A 10-Channel MUX Module

Creating attenuators An attenuator is composed of two resistors that act as a voltage divider. A typical attenuator circuit is also shown below.
(series element)

To select the attenuator components, use the following equation:
\[
\mathrm{Vo}=\mathrm{Vi} \times \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)
\]

One typical use for the shunt component is to convert the output of 4 to 20 mA transducers to a voltage that can be measured using a DM M. A \(50 \Omega, \pm 1 \%, 0.5\) watt resistor can be installed in the R2 (shunt) location and the resultant voltage drop (transducer current through the resistor) measured. The \(50 \Omega\) resistor converts the 4-20 mA current to an 0.2-1 volt signal. No series element (R1) is needed.

\section*{44470A Wiring Information}

Use the Agilent 44480A Terminal Block to make connections to the 44470A. One 44480A is supplied with the module.

The terminal block includes a screw terminal that connects external wiring to the 44470A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

\section*{44470D 20-Channel MUX M odule}

The Agilent 44470D Relay MUX M odule provides 20 2-wire channels (latching relays) to switch both High (H) and Low (L) input signals to a common bus. The individual relays on this module are rated at a maximum voltage of 250 volts with a maximum current of 2 amps dc or ac rms.

The module exhibits low thermal offset characteristics, making it ideal for precision low-level measurements. However, since no thermocouple compensation is included, temperature measurement errors may occur if you use this module to switch thermocouples.

The 44470D can be operated in one of two modes: single channel break-before-make (BBM) or multiple channels closed at the same time.
Specifications for the 44470D are given on page 331.

\section*{44470D Simplified Schematic}

A simplified schematic is shown below. The 44470D consists of 20 2-wire relays connected to a common bus. Channels on the 44470D are numbered as 00 through 19 (CH00 through CH19).

Chapter 7 Plug-in Modules
44470D 20-Channel MUX Module

\section*{44470D Wiring Information}

Use the Agilent 44480B Terminal Block to make connections to the 44470D. One 44480B is supplied with the module. The terminal block connectors are shown below. Additional information about the terminal block is given on page 287.

\section*{44470D J 901 Pinout}

J 901 is a 3-row, 48-pin male connector mounted on the 44470D. The pin assignments in this connector are shown below.

J901 A2 \(>{ }^{\mathrm{CHOOL}}\)

E2 \(>\mathrm{CHO1} \mathrm{~L}_{<}\)
\(\mathrm{E} 4 \gg \mathrm{CHO1} \mathrm{H}^{\mathrm{CH}^{2}}\)
\(\mathrm{A} 4>{ }^{\mathrm{CHO} 2 \mathrm{~L}_{<}}\)
C4) \(\xlongequal{\mathrm{CHO}_{2} \mathrm{H}_{<}}\)
A6 \(>{ }^{\mathrm{CHO} \mathrm{L}_{<}}\)
C6 \(\xlongequal{\mathrm{CHOOH}^{\mathrm{H}}}\)
E6 \(>{ }^{\mathrm{CHO} 4 \mathrm{~L}}\)
E8 \(>\mathrm{CHO}_{<}\)
\(\mathrm{E} 14 \xrightarrow{\mathrm{NC}}\) \(\mathrm{C} 16 \xrightarrow{\mathrm{NC}}\)

\footnotetext{
A32, C16, C32, E14, E30, E32 NOTC ONNEC TED (NC)
}

Chapter 7 Plug-in Modules
44471A 10-Channel GP Relay Module

\section*{44471A 10-Channel GP Relay M odule}

The Agilent 44471A GP Relay M odule provides 10 independent Single Pole-Single Throw (SPST, Form A) latching relays. The individual relays on this module are rated for a maximum open circuit voltage of 250 volts dc or ac rms. Maximum current per relay is 2 amps dc or ac rms, and maximum power per relay is 60 watts dc or 125 VA ac. Maximum closed channel resistance is less than \(2 \Omega\).

The 44471A exhibits low thermal characteristics, which make it ideal for independent (non-multiplexed) signal switching. It can be operated in either single channel break-before-make (BBM), or multiple channels closed at the same time.

Specifications for the 44471A are given on page 333.

\section*{44471A Simplified Schematic}

A simplified schematic is shown below. The 44471A consists of 10 independent Single Pole-Single Throw (SPST, F orm A) relays. Channels on the 44471A are numbered as 00 through 09 (CH 00 through CH 09).

\section*{Custom Signal Conditioning}

The 44471A circuit board has a provision to allow you to install simple attenuators or filters in the relay paths. There is al so a place to install relay contact protection networks. The figure below shows the locations on the main circuit board.

Protection Networks An RC protection network and a varistor can be installed in each relay path. M ore detailed information about protection circuits is given on page 272.

Chapter 7 Plug-in Modules
44471A 10-Channel GP Relay Module

\section*{44471A Wiring Information}

Use the Agilent 44481A Terminal Block to make connections to the 44471A. One 44481A is supplied with the module.

The terminal block includes a screw terminal that connects external wiring to the 44471A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

\section*{44471D 20-Channel GP Relay M odule}

The Agilent 44471D GP Relay module provides 20 independent Single Pole-Single Throw (SPST, F orm A) latching relays. Typically used as an actuator assembly, its low thermal characteristics make it ideal for independent (non-multiplexed) signal switching.

The individual relays on this module are rated for a maximum open circuit voltage of 250 volts dc or ac rms. Maximum current per relay is 1 amp dc or acrms, and maximum power per relay is 60 watts dc or 125 VA ac. Maximum closed channel resistance is less than \(2 \Omega\).

Specifications for the 44471D are given on page 335.

\section*{44471D Simplified Schematic}

A simplified schematic is shown below. The 44471D GP Relay Module consists of 20 independent SPST (Single Pole-Single Through) relays. Channels are numbered as 00 through 19 (CH00 through CH 19).

Chapter 7 Plug-in Modules
44471D 20-Channel GP Relay Module

\section*{44471D Wiring Information}

Use the Agilent 44481B Terminal Block to make connections to the 44471D. One 44481B is supplied with the module. The terminal block connectors are shown below. Additional information about the terminal block is given on page 287.

\section*{44471D J 901 Pinout}

J 901 is a 3-row, 48-pin male DIN connector mounted on the 44471D. The pin assignments are shown in the figure below

E14, A16, C16, E16, E30, A32, C32, E32 NOTCONNEC TED (NC)

Chapter 7 Plug-in Modules
44472A Dual 4-Channel VHF Switch Module

\section*{44472A Dual 4-Channel VHF Switch Module}

The Agilent 44472A VHF Switch M odule provides two independent 4-to-1 coaxial multiplexers. These multiplexers are specifically designed for broadband signal switching up to 300 MHz . This module is the ideal choice for wide dynamic range measurements with spectrum and distortion analyzers.
Connections to the module are made through 10 BNC (coaxial) connectors mounted directly on the 44472A. Characteristic impedance is \(50 \Omega\).

\section*{Note}

The 44472A is not recommended for use with instruments that require high DC isolation from earth ground (such as a DMM).

Specifications for the 44472A are given on page 337.

\section*{44472A Simplified Schematic}

A simplified schematic is shown below. The 44472A VHF Switch module contains of two groups (GROUP 0 \& GROUP 1) of 4-to-1 coaxial MUXs. The two groups are isolated from each other and also from the mainframe chassis ground to eliminate ground loops. Furthermore, the shield (or low) of each channel is NOT switched; the shields of the four channels in each group are in common. A tree relay scheme is used to provide higher isolation between channels and from open channels to common. Channels are numbered as 00 through 03 for group 0 , and 10 through 13 for group 1.

Chapter 7 Plug-in Modules

\section*{44472A Wiring Information}

Regardless of the topol ogy (configuration) you are using, always use \(50 \Omega\) shiel ded coaxial cables to maintain both characteristic impedance and isolation. Keep cables as short as possible, especially in high frequency circuits or pulse circuits where a rise/fall time of less than 50 nsec is critical. Long cables can add considerable delay time which may cause timing problems. All test equipment (counters, spectrum analyzers, oscilloscopes, etc.) must be terminated with a \(50 \Omega\) impedance to minimize reflection loss. The rear panel is shown below.

Switch Group 0
Switch Group 1
COMO

\section*{44473A \(4 \times 4\) 2-Wire Matrix Switch M odule}

The Agilent 44473A Matrix Switch provides a \(4 \times 4\) matrix of 2-wire switches. E ach node (crosspoint) in the matrix contains a latching relay that connects a row to a column. Both \(\mathrm{Hi}(\mathrm{H})\) and \(\mathrm{Lo}(\mathrm{L})\) lines are switched. More than one switch can be closed at a time, allowing any combination of rows and columns to be connected.

Matrix switching provides a convenient way to connect a group of test instruments to multiple test points on a device or to multiple devices. This matrix switch offers highly flexible switching for testing devices over a frequency range of dc to 100 kHz .

Multiple 44473A modules may be connected together to form a larger matrices. The 44473A can al so be used in conjunction with other modules (such as the 44470A 10-Channel MUX) to provide a wide variety of switching combinations. When wiring between multiple modules, keep wire length as short as possible to minimize noise and signal degradation.

Specifications for the 44473A are given on page 339.

Chapter 7 Plug-in Modules
44473A 4 x 4 2-Wire Matrix Switch Module

\section*{44473A Simplified Schematic}

A simplified schematic is shown below. The 44473A consists of 16 2-wire relays (nodes/crosspoints) organized in a 4-row by 4-column matrix.

Channels in this matrix module are numbered in the Row-Column format. F or example, channel 32 represents the crosspoint connection between row 3 and column 2; while the channel 23 represents the crosspoint connection between row 2 and column 3, and so on.

\section*{44473A Wiring Information}

Use the Agilent 44483A Terminal Block to make connections to the 44473A. One 44483A is supplied with the module.

The terminal block includes a screw terminal that connects external wiring to the 44473A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

Chapter 7 Plug-in Modules
44474A 16-Bit Digital I/O Module

\section*{44474A 16-Bit Digital I/O M odule}

The Agilent 44474A Digital I/O module provides 16 bidirectional data lines (bits) plus 4 lines used for control and handshaking. All lines are TTL compatible. The 16 I/O lines or bits can be addressed individually (bit-by-bit), as two independent 8-bit ports, or as one 16-bit word.
The two 8-bit ports are completely independent of each other and may be used separately. F or instance, one port can be used for output operations, while the other for input. However, all 8 bits in a given port must be either input or output bits (not a combination of input and output).

Five handshaking modes are available for this module. The handshaking modes are described beginning on page 98. Handshaking uses up to three control lines:
- Peripheral Control (PCTL)
- I/O direction (I/O)
- Peripheral Flag (PFLG or EI)

Additionally, the 44474A provides an additional Channel Closed (CC) line that changes state to indicate a channel has been closed. The External Increment (EI) and Channel Closed (CC) lines can be used to control an external instrument such as a DMM. For example, Agilent DM Ms have a Voltmeter Complete line that indi cates when a measurement has completed. This line is connected to the 44474A EI input and the Channel Closed output is connected to the DM M External Trigger. When properly configured, a scan list can then be executed and measured without external computer control.

Port and bit numbering is show in the table below. Note that the ports are numbered differently if you are using the 3488 System mode.
\begin{tabular}{|l|l|l|l|}
\hline System Mode & 16-Bit Port \# & 8-Bit Port \# & Bit \# \\
\hline \multirow{2}{*}{ SCPI mode } & \multirow{2}{*}{ PORT 00 } & PORT 00 & Bits 0-7 (LO BYTE) \\
\cline { 3 - 4 } & & PORT 01 & Bits 0-7 (HI BYTE) \\
\hline \multirow{2}{*}{\(3488 A\) Mode } & \multirow{2}{*}{ PORT 02 } & PORT 00 & Bits 0-7 (LO BYTE) \\
\cline { 3 - 4 } & & PORT 01 & Bits 0-7 (HI BYTE) \\
\hline
\end{tabular}

Specifications for the 44474A are given on page 341.

\section*{44474A Simplified Schematic}

A simplified schematic is shown below. Note that all 16 I/O lines and 4 control lines share a common Lo connection. The 16 bits (I/O lines) are numbered as bits 0 through 15 when the module is addressed individually. The bits 0-7 refer to the bits 0-7 of the LO BYTE, and the bits 8-15 refer to the bits 0-7 of the HI BYTE.

Chapter 7 Plug-in Modules
44474A 16-Bit Digital I/O Module

\section*{44474A Wiring Information}

Use the Agilent 44484A Terminal Block to make connections to the 44474A. One 44484A is supplied with the module.

The terminal block includes a screw terminal that connects external wiring to the 44474A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

\section*{44475A Breadboard M odule}

The Agilent 44475A Breadboard module provides a means to mount custom designed circuits for use in the mainframe. If a desired function is not be available on a standard plug-in module, the 44475A provides the ideal solution.

Components are specified (but not supplied with the Breadboard module) for interfacing the Breadboard to the 3499A/B/C backplane. When these components are used, the Breadboard then provides 8 static input and 8 static output lines.

Two commands are used to control the Breadboard; DIAG:SPEEK? reads data from the input port and DIAG:SPOKE writes data to the output port. These commands are described on page 131.
Specifications for the 44475A are given on page 342.

\section*{Chapter 7 Plug-in Modules 44475A Breadboard Module}

The 44475A circuit board is shown below.

Connection to backplane (connector supplied)

\section*{44475A Simplified Schematic}

A simplified schematic of the breadboard interface is shown below. The 44475A is divided into two areas. They are:
1. Breadboarding Grid consisting of holes on 0.10 inch centers. There is 0.030 inch spacing between foil pads. Bus traces for power supply and ground, and provisions for the screw terminal block edge connector are provided.
2. Built-in design for providing an 8-bit digital input port and an 8-bit digital output port.

Chapter 7 Plug-in Modules

\section*{44475A Wiring Information}

Use the Agilent 44485A Terminal Block to make connections to the 44475A. One 44485A is supplied with the module. Included with the terminal block is a numbered label you can apply for slot identification.

The terminal block includes a screw terminal that connects external wiring to the 44475A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

\section*{Assembling the Breadboard}

Assemble the 44475A B readboard using the following steps:
1 Load the components for the 8-bit Input and 8-bit Output ports.
Components were not supplied (but are listed in the table below). Y ou can obtain these components from any supplier. The figure on page 252 shows where these components are to be mounted on the Breadboard.
\begin{tabular}{|c|l|l|}
\hline Quantity & Component & Description \\
\hline 1 & SN 74LS138 & 3 to 8 line decoder \\
\hline 1 & SN 74LS157 & \begin{tabular}{l}
Quad 2 to 1 line data selector/multiplexer \\
(noninverted data outputs)
\end{tabular} \\
\hline 1 & SN 74LS244 & \begin{tabular}{l}
Octal Butters, line drivers, line receivers \\
(noninverted 3-state outputs)
\end{tabular} \\
\hline 1 & SN 74LS374 & Octal D-Type Flip-Flops (3-state outputs) \\
\hline 1 & & 0.01 uF Capacitor, 10 volts \\
\hline 1 & & 1 uF Capacitor, 10 volts \\
\hline
\end{tabular}

\section*{2 Install your custom circuitry.}

Component height restrictions and how far the component leads extend through the circuit board are limited by the top and bottom shields. These shields provide RF shielding as well as structural strength and must never be eliminated.

The maximum component height allowed is 12.7 mm (0.50 in .). However, if the height of any component exceeds 10 mm , the conductive surface of the component must be insulated. On the circuit side of the Breadboard, the lead lengths are limited to 3.2 mm (0.125 in .) from the circuit board.

\section*{3 Assemble the hardware.}

The table bel ow lists the hardware parts that are supplied with the 44475A. An assembly diagram is given on the next page.
\begin{tabular}{|l|l|}
\hline Part Number & Description \\
\hline \(44475-26501\) & Breadboard circuit board \\
\hline \(03488-00602\) & Bottom shield \\
\hline \(03488-00603\) & Top shield (component side) \\
\hline \(1251-8645\) & 2 rows \(\times 15\) pins right angle connector (small connector) \\
\hline \(44475-62102\) & 2 rows x 11 pins right angle connector (large connector) \\
\hline \(44475-62101\) & Terminal Block, keyed for the breadboard connector \\
\hline \(5040-5193\) & Connector Housing \\
\hline \(0515-5194\) & Cable Clamp \\
\hline \(0515-0063\) & Pan Head screw, \(2.5 \times 12\) (metric) \\
\hline \(0515-0843\) & Flat Head screw, \(2.5 \times 20\) Lock (metric) \\
\hline \(0515-0045\) & Pan Head screw, \(3 \times 18\) Lock (metric) \\
\hline \(0535-0004\) & Hex Nut, \(3 \times 0.5\) \\
\hline \(0535-0008\) & Hex Nut, \(2.5 \times 0.45\) \\
\hline \(2190-0583\) & Lock Washer \\
\hline \(2190-0584\) & Lock Washer \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
44475A Breadboard Module

\section*{44476A Microwave Switch M odule}

The 44476A contains three Microwave Switches. These switches have the following features:
- Broad bandwidth (dc to 18 GHz)
- High isolation (> 90 dB to 18 GHz)
- Excellent repeatability (typically 0.03 dB after 1,000,000 switchings)
- Internal \(50 \Omega\) terminations

The Agilent 8762B is a break-before-make switch controlled by a latching solenoid. Once switched, coil voltage can be removed and the switch remains in the switched position. I nternal coil contacts open and remove coil voltage after a switching operation to minimize the amount of heat dissipated near the switch contacts. The Agilent 8762B uses SMA connectors for ease in cable connections

The 3499A/B/C identifies this module as a 44471A on the front-panel display. Changing the state of channels other than channels 00 through 02 does not generate an error, but has no effect.
Specifications for the 44476A are given on page 344.

Chapter 7 Plug-in Modules
44476A Microwave Switch Module

\section*{44476A Simplified Schematic}

A simplified schematic is given below. The 44476A contains three 8762B Microwave Switches. Each mi crowave switch is referred to as a channel. The channels on the 44476A are numbered as 00, 01, and 02.

* NOTE

TERMINAL DESIGNATIONS INSIDE THE DASHED BOXES REFER TO THE 33311 B ONLY. MODULE PANEL DESIGNATORS OUTSIDE THE DASHED BOXES ARE THOSE SILKSCREENED ON THE 44476A PANEL. ANY REFERENCE IN THIS MANUAL TOA PORT REFERS TOTHE MODULE PANEL DESIGNATORS.

Chapter 7 Plug-in Modules 44476A Microwave Switch Module

\section*{44476A Wiring Information}

The 44476A provides nine \(50 \Omega\) SMA connectors.

Chapter 7 Plug-in Modules
44476B Microwave Switch Module

\section*{44476B Microwave Switch Module}

The 44476B is not supplied with microwave switches. You must provide your own microwave switches, mount them on the assembly, and connect one of the module's F orm C relay drive circuits to each switch.
The 44476B panel has two \(53.8 \times 9.6 \mathrm{~mm}\) cutouts for a set of microwave switches. The recommended Agilent microwave switches are listed below.
\begin{tabular}{|c|c|l|}
\hline Microwave Switch & Ports & Frequency \\
\hline 8762 A & 3 & DC-4 GHz \\
\hline 8762 B & 3 & DC-18 GHz \\
\hline 8762 C & 3 & DC-26.5 GHz \\
\hline \(8762 \mathrm{~F}^{\mathrm{a}}\) & 3 & DC-4 GHz \\
\hline 8763 B & 4 & \(\mathrm{DC}-18 \mathrm{GHz}\) \\
\hline 8763 C & 4 & \(\mathrm{DC}-26.5 \mathrm{GHz}\) \\
\hline 8764 B & 5 & DC-18 GHz \\
\hline 8764 C & 5 & DC-26.5 GHz \\
\hline
\end{tabular}
a. Except the 8762 F Microwave Switch with \(75 \Omega\) characteristic impedance, all others are \(50 \Omega\).

The 3499A/B/C identifies this module as a 44471A on the front-panel display. Changing the state of channels other than channels 00 through 02 does not generate an error, but has no effect.

Specifications for the 44476B are dependent upon the switches used. Refer to the switch data sheets for more information.

Chapter 7 Plug-in Modules 44476B Microwave Switch Module

The 44476B is shown below.

Chapter 7 Plug-in Modules

\section*{44476B Simplified Schematic}

A simplified schematic of the 44476B is shown below. You must provide your own microwave switches and mount them on the assembly. The channel are numbered channels 00 and 01.

Chapter 7 Plug-in Modules 44476B Microwave Switch Module

\section*{Configuration}

Mount user-supplied microwave switches on the module after connecting the channels 00 and 01 drive jumpers (W1 and W2). The figure below shows the drive jumper orientation.

DRIVE JUMPER PLUG

\section*{SIDE VIEW}

\section*{TOP VIEW}

Chapter 7 Plug-in Modules 44476B Microwave Switch Module

The figure below shows an Agilent 8764B 5-port switch mounted on the 44476B.

\section*{44476B Wiring Information}

The user-provided switches use \(50 \Omega\) SM A connectors (except the Agilent 8762 F which uses \(75 \Omega\) SMA connectors).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{(} & \multirow[t]{2}{*}{\begin{tabular}{l}
44476B MICROWAVE SWTCH \\
CHANNEL 00
\end{tabular}} & & \[
\lambda_{4} \lambda_{5}
\] & \multirow[t]{2}{*}{\[
\lambda_{1} \lambda_{2}
\]} & \[
\mathrm{C}_{3}
\] & \(\lambda_{4}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 7 \mathrm{VDC}=\text { MAX } \\
& \text { 1WCW } / \text { CHAN }
\end{aligned}
\]} \\
\hline & & & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NNEL §}} \\
\hline & NO & C & NC & NO & C & NC & & \\
\hline
\end{tabular}

\section*{44477A F orm-C Relay Module}

The Agilent 44477A consists of seven independent, break-before-make, SPDT Form-C latching relays (one contact normally open, one contact normally closed).

The 44477A can be used for signal switching or power applications (\(250 \mathrm{~V}, 2 \mathrm{~A}\)). Additionally, this module is ideally suited for driving remote RF , coaxial, and microwave devices such as the Agilent 8761, 8762A/B/C, 8763B/C, and 8764B/C switches or programmable step attenuators like the 876xx series.

Y ou can use the 3499A/B/C +5 V power supply available on the module or provide an external supply to use as pull-ups on either the NO or NC paths.

The 3499A/B/C identifies this module as a 44471A on the front-panel display. Changing the state of channels other than channels 00 through 06 does not generate an error, but has no effect.

Specifications for the 44477A are given on page 345.

\section*{44477A Simplified Schematic}

A simplified schematic is given on the next page. The 44477A consists of seven independent Form-C relays (K 901-K 907) which are numbered as channels 00 through 06. Closing a channel (relay) will connect the normally open (NO) contact to the common port (C). After power-on or a reset, the F orm C relays on the 44477A have their normally open (NO) contacts open and normally closed (NC) contacts closed.

E ach relay circuit has mounting holes (J M901-J M 914) used to add a pull-up resistor from the NO (normally open) and/or NC (normally closed) contacts to the +5 V power supply. Also, there are mounting holes (J M921 and J M 922) at the +5 V supply for the addition of a protection resistor or inductor if the internal supply is to be used. If the internal supply is not used, an external power supply can be applied through the screw terminal block via the " H " terminal. The addition of pull-up resistors can be useful when driving logic circuits where the common (C) terminal is connected to ground and used to pull either the NO or the NC line low.

Chapter 7 Plug-in Modules
44477A Form-C Relay Module

\section*{44477A Wiring Information}

Use the Agilent 44487A Terminal Block to make connections to the 44477A. One 44487A is supplied with the module. Included with the terminal block is a numbered label you can apply for slot identification.

The terminal block includes a screw terminal that connects external wiring to the 44477A. The screw terminal is shown bel ow. Additional information about the terminal block is given on page 285.

\section*{44478A/B 1.3 GHz Dual 4-to-1 M U X M odules}

The Agilent 44478A and 44478B consist of two independent 4-to-1 multiplexers (group 00 and group 01) that provide bidirectional switching. The module's latching relays are configured in a "tree" structure, to provide high isolation and Iow VSWR (voltage standing wave ratio). Each channel can switch up to 42 V dc +ac peak at frequencies up to 1.3 GHz .

The 44478A is intended for \(50 \Omega\) impedance applications.
The 44478B is intended for \(75 \Omega\) impedance applications.
User connections for the channels are through BNC connectors on the rear panel. Each channel has an SMB connector on the main PC board used to connect resistive terminations and terminate unused channels.

The 3499A/B/C identifies this module as a 44472A on the front-panel display. Changing the state of channels other than channels 00 through 03 or 10 through 13 does not generate an error, but has no effect.

Specifications for the 44478A/B are given on page 347.

Chapter 7 Plug-in Modules
44478A/B 1.3 GHz Dual 4-to-1 MUX Modules

The 44478A/B is shown below.

\section*{44478A Simplified Schematic}

A simplified schematic is shown below. The two groups of 4-to-1 MUXs are specified as GROUP 00 and GROUP 10. They are isolated from each other. Closing a channel closes a particular set of relays to connect the common BNC to one of the four BNC inputs. Channels within each group are break-before-make and are numbered as 00 through 03 for GROUP 00 and 10 through 13 for GROUP 10.

GROUP 00

R

Chapter 7 Plug-in Modules

\section*{44478A/B 1.3 GHz Dual 4-to-1 MUX Modules}

\section*{44478A Wiring Information}

External Wiring The figure below shows the module's female BNC connectors and the channel group numbers. The BNC connectors accept user-supplied male BNC connectors.

44478 MULTIPLEXER

Terminations The figure on page 268 shows the SMB connectors on the main PC Board. The SMB connectors allow you to connect SMB resistive terminations to any unused channels. SMB resistive terminations are available from Agilent using the following part number:
- 34585A (set of four \(50 \Omega\) terminations for the 44478A)
- 34586A (set of four \(75 \Omega\) terminations for the \(44478 B\))

\section*{Note}

To maintain proper operation, unused channels should be terminated by plugging a \(50 \Omega\) or \(75 \Omega\) SMB type resistive termination (\(50 \Omega\) for 44478A and \(75 \Omega\) for 44478B) onto the male SM B connector provided for each channel.

\section*{Cabling Considerations}

RG-223/U cable is recommended. Ready-made cables (BNCs on both ends) are available from Agilent using the following part numbers:
- 8120-1838: 30 cm (12 in.), \(50 \Omega\) coaxial
- 8120-1839: 61 cm (24 in.), \(50 \Omega\) coaxial
- 8120-1840: 122 cm (48 in.), \(50 \Omega\) coaxial
- 5062-6452: 30 cm (12 in.), \(75 \Omega\) coaxial

Always use shielded coaxial cables with the characteristic impedance of the module used (\(50 \Omega\) or \(75 \Omega\)). Keep cables as short as possible, especially in high frequency circuits or pulse circuits where a rise/fall time of \(<50 \mathrm{nS}\) is critical. Long cables can add considerable delay time which can cause timing problems. All test equipment such as counters, spectrum analyzers, oscilloscopes, etc., must be terminated in the characteristic impedance to minimize reflection loss.

\section*{Chapter 7 Plug-in Modules}

\section*{Protection Networks}

\section*{Protection Networks}

This information applies specifically to the N2267A (page 206) and 44471A (page 236) multiplexer modules. These multiplexers have provisions built in to allow you to add custom protection networks. This information is general and may be used to help you design other relay protection circuits.
Protection networks are especially needed if the loads being switched are inductive loads such as incandescent lamps or electric motors. The resistance of these loads is very low when the power is first applied (for example, the transient inrush current when switching on a Iamp could be 15 times the steady-state value). When switching off inductive loads, the counter EMF of the coil can generate high voltage across the relay contacts, and may damage the contacts.

Current limitation circuitry should be used to prevent relay contacts from being damaged. Space to mount a protection network is designed on the PC board to avoid this damage. Either an RC network or a varistor can effectively absorb the high voltage surge. The specifications of protection components are determined by the loads that are connected to the multiplexer. A typical protection circuit for relay contacts is illustrated below.

In designing RC protection networks, the protection resistor, \(R_{p}\), is selected as a compromise between two values. The minimum value of \(R_{p}\) is determined by the maximum acceptable relay contact current (I o). The maximum allowable relay current (Io) is 2 amps ac rms or 2 amps dc . Thus, the minimum value for \(R_{p}\) is \(V / I o\), where \(V\) is the peak value of the supply voltage.
\[
\mathrm{R}_{\mathrm{p}}=\mathrm{V} / \mathrm{Io}=\mathrm{V} / 2
\]

Equation 1
The maximum value for \(R_{p}\) is usually made equal to the load resistance, RI. Therefore, the limits on \(R_{p}\) can be stated as:
\[
\begin{equation*}
\mathrm{V} / \mathrm{I} o<\mathrm{R}_{\mathrm{p}}<\mathrm{RI} \tag{Equation 2}
\end{equation*}
\]

Note, the actual value of Io in a circuit is determined by the equation:
\[
\mathrm{Io}=\mathrm{V} / \mathrm{RI}
\]

Equation 3
Where \(V\) is the peak value of the source voltage and RI is the resistance of the load. Equations \(1 \& 2\) use lo as the maximum allowable relay current to determine the minimum value of \(R_{p}\). The value for lo cal culated in Equation 3 will be used to determine the value of the protection capacitor, \(\mathrm{C}_{\mathrm{p}}\).
In determine the value of the protection network capacitor \(\mathrm{C}_{\mathrm{p}}\), there are several things that need to be considered. First, the total circuit capacitance (C) must be such that the peak voltage across the open relay contacts does not exceed 353 volts peak (250 V rms \(=353 \mathrm{Vp}\)). The equation for determining the minimum allowable circuit capacitance is:
\[
C \geq(10 / 353)^{2 L}
\]

Equation 4
where \(L=\) the inductance of the load and \(I o\) is the value calculated in Equation 3.

In reality, the total circuit capacitance \((\mathrm{C})\) is made up of the wiring capacitance plus the value of the protection network capacitor \(\mathrm{C}_{\mathrm{p}}\). Therefore, the minimum value for \(\mathrm{C}_{\mathrm{p}}\) should be the value obtained for the total circuit capacitance, C, from Equation 4. Indeed, the actual value used for \(C_{p}\) should be substantially greater than the value cal culated for C .

\section*{Chapter 7 Plug-in Modules}

\section*{Protection Networks}

For example, we will determine the typical values for an RC protection network where the load is a small ac motor running on the 120 V ac line (170 V peak). This motor draws a maximum of 2 amps .
Using Equation 1 we can find the minimum value for \(R_{p}\) :
\[
\mathrm{R}_{\mathrm{p}}=\mathrm{V} / \mathrm{lo}=170 / 2=85 \Omega
\]

The maximum value for \(R_{p}\) would be equal to the load resistance or \(400 \Omega\). Therefore, any resistor (preferably at least 1 watt) between 85 and \(400 \Omega\) will suffice.

To keep the peak contact voltage below 353 V peak, use equation 3 to determine lo:
\[
\mathrm{I} \mathrm{O}=\mathrm{V} / \mathrm{R} 1=170 / 400=0.425 \mathrm{~A}
\]

Now use equation 4 to determine C:
\[
C \geq(I o / 353)^{2 L}=(0.425 / 353)^{2(0.1)}=0.144 \mu \mathrm{~F}
\]

Since \(R_{p}\) can vary between \(85 \Omega\) and \(400 \Omega\), an appropriate protection network to be connected to this circuit is \(\mathrm{R}_{\mathrm{p}}=220 \Omega\) and \(\mathrm{Cp}=0.15 \mu \mathrm{~F}\).

\section*{Using Varistors}

J ust as contact protection circuits are important to suppress noise while relay contacts are opening and closing, transient protection should be provided while the relays are open. This is the purpose of the varistor. When selecting a varistor, make certain that it has a voltage rating sufficient for your application. A typical 250 VAC varistor can be purchased with the Agilent part number 0873-0227.

\section*{Terminals and Connections Information}

This section contains details about each of the terminals and connections available for the plug-in modules. Some modules have more than one available terminal. The table bel ow shows the terminals available for each plug-in module. The general wiring information about each terminal is on the listed page number. Additionally, for some terminals, you will need to consult the specific plug-in module for connector pin-out diagrams and assignments.
\begin{tabular}{|c|c|c|c|}
\hline Plug-in Module & \multicolumn{2}{|l|}{Available Terminal(s)} & Page \\
\hline N2260A & \begin{tabular}{l}
N2290A \\
N2296A \\
N2297A \\
N2299A
\end{tabular} & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector DIN96 to twin D50 Cable DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline N2261A & \begin{tabular}{l}
N2291A \\
N2296A \\
N2297A \\
N2299A
\end{tabular} & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector DIN96 to twin D50 Cable \\
DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline N2262A & \[
\begin{aligned}
& \text { N2292A } \\
& \text { N2296A } \\
& \text { N2298A }
\end{aligned}
\] & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector DIN96 to D25 Cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 280
\end{aligned}
\] \\
\hline N2263A & \[
\begin{aligned}
& \text { N2293A } \\
& \text { N2296A } \\
& \text { N2297A } \\
& \text { N2299A }
\end{aligned}
\] & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector \\
DIN96 to twin D50 Cable \\
DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline N2264A & \[
\begin{aligned}
& \text { N2294A } \\
& \text { N2296A } \\
& \text { N2297A } \\
& \text { N2299A }
\end{aligned}
\] & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector DIN96 to twin D50 Cable \\
DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline N2265A & \begin{tabular}{l}
N2295A \\
N2296A \\
N2297A \\
N2299A
\end{tabular} & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector \\
DIN96 to twin D50 Cable \\
DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
Terminals and Connections Information
\begin{tabular}{|c|c|c|c|}
\hline Plug-in Module & \multicolumn{2}{|l|}{Available Terminal(s)} & Page \\
\hline N2266A & \begin{tabular}{l}
N2290A \\
N2296A \\
N2297A \\
N2299A
\end{tabular} & \begin{tabular}{l}
Screw Terminal Block \\
Direct wiring (insulation displacement) connector DIN96 to twin D50 Cable \\
DIN96 to quad D25 cable
\end{tabular} & \[
\begin{aligned}
& 277 \\
& 278 \\
& 279 \\
& 281
\end{aligned}
\] \\
\hline N2267A & N2327A & Crimp and Insert Kit & 282 \\
\hline N2268A & Rear Panel & SMA Connectors & 211 \\
\hline N2270A & N2320A & Crimp and Insert Kit & 283 \\
\hline N2272A & Rear Panel & BNC Connectors & 215 \\
\hline N2276A/B & Rear Panel & SMA Connectors (on switches or attenuators) & 220 \\
\hline N2280A & Rear Panel & SC/APC Connectors & 225 \\
\hline N2281A & Rear Panel & SC/APC Connectors & 227 \\
\hline N2282A & Rear Panel & SC/APC Connectors & 229 \\
\hline 44470A & 44480A & Screw Terminal Connector Block & 285 \\
\hline 44470D & 44480B & Screw Terminal Block & 287 \\
\hline 44471A & 44481A & Screw Terminal Connector Block & 285 \\
\hline 44471D & 44481D & Screw Terminal Block & 287 \\
\hline 44472A & Rear Panel & BNC Connectors & 244 \\
\hline 44473A & 44483A & Screw Terminal Connector Block & 285 \\
\hline 44474A & 44484A & Screw Terminal Connector Block & 285 \\
\hline 44475A & 44485A & Screw Terminal Connector Block & 285 \\
\hline 44476A/B & Rear Panel & SMA Connectors & 259 \\
\hline 44477A & 44477A & Screw Terminal Connector Block & 285 \\
\hline 44478A/B & Rear Panel & BNC Connectors & 270 \\
\hline
\end{tabular}

\section*{N229X Screw Terminal Blocks}

This terminal block is compatible with the N 2290A, N2291A, N2292A, N2293A, and N2295A plug-in modules. Refer to each plug-in module section for detailed wiring information. The figure below shows the basic steps to wire and assemble this terminal block.

Chapter 7 Plug-in Modules
Terminals and Connections Information

\section*{N2296A Insulation Displacement Connector}

The N2296A is an insulation displacement connector you can use with the N2260A, N2261A, N2262A, N2263A, N2264A, and N2265A modules. The figure bel ow shows the basic steps to wire and assemble this terminal. Refer to the specific plug-in module wiring information for details about the connector and pin-out assignments.

\section*{N2297A DIN96 to twin D50 Cable}

The N2297A is a female DIN96 to twin male D50 Cable. The cable uses 26 AWG wire (which meets UL AWM: 2464) with overall foil shield. The maximum voltage is 200 volts per wire. The figure below shows the connections between the D96 and the two D50s. Refer to the specific plug-in module wiring information for details about the connector and pin-out assignments.

Chapter 7 Plug-in Modules
Terminals and Connections Information

\section*{N2298A DIN96 to D25 Cable}

The N2298A is a female DIN 96 to a male Sub-D25 Cable. The cable uses 26 AWG wire (which meets UL AWM: 2464) with overall foil shield. The maximum voltage is 200 volts per wire. The figure below shows the connections between the D96 and the Sub-D250. Refer to the N 2262A module wiring information (page 186) for details about the connector and pin-out assignments.

N2298A DIN96-TO-D25 CABLE

\section*{N2299A DIN96 to quad D25 Cable}

The N2297A is a female DIN 96 to four male D25 Cable. The cable uses 26 AWG wire (which meets UL AWM: 2464) with overall foil shield. The maximum voltage is 200 volts per wire. The figure below shows the connections between the D96 and the four D25s. Refer to the specific plug-in module wiring information for details about the connector and pin-out assignments.
N2299A DIN96-TO-QUAD-D25 CABLE

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CONNECTOR 1 vs. 96 -PIN DI} & \multicolumn{2}{|l|}{CONNECTOR 2 vs. 96-PIN DN} & \multicolumn{2}{|l|}{CONNECTOR 3 vs. 96dPIN DN} & \multicolumn{2}{|l|}{CONNECTOR 4 vs. 96-PIN DN} \\
\hline SUB-D & DIN & SUB-D & DIN & SUB-D & DIN & SUB-D & DIN \\
\hline & A1 & & A9 & & A17 & & A25 \\
\hline 2 & B1 & 2 & B9 & 2 & B17 & 2 & B25 \\
\hline 4 & A3 & 4 & A11 & 4 & A19 & 4 & A27 \\
\hline 5 & B3 & 5 & B11 & 5 & B19 & 5 & B27 \\
\hline 6 & C3 & 6 & C11 & 6 & C199 & 6 & \(\mathrm{C} 27^{2}\) \\
\hline 7 & A5 & 7 & A13 & 7 & A21 & 7 & A29 \\
\hline 8 & B5 & 8 & B13 & 8 & B21 & 8 & B29 \\
\hline 9 & C5 & 9 & C13 & 9 & C21 & 9 & C29 \\
\hline 10 & A7 & 10 & A15 & 10 & A23 & 10 & A31 \\
\hline 11 & B7 & 11 & B15 & 11 & B23 & 11 & B31 \\
\hline 12 & C7 & 12 & C15 & 12 & C23 & 12 & C31 \\
\hline 13 & - & 13 & -- & 13 & -- & 13 & -- \\
\hline 14 & A2 & 14 & A10 & 14 & A18 & 14 & A26 \\
\hline 15 & B2 & 15 & B10 & 15 & B18 & 15 & B26 \\
\hline 16 & C2 & 16 & C10 & 16 & C18 & 16 & C26 \\
\hline 17 & A4 & 17 & A12 & 17 & A20 & 17 & A28 \\
\hline 18 & B4 & 18 & B12 & 18 & B20 & 18 & B28 \\
\hline 19 & C4 & 19 & C12 & 19 & C20 & 19 & C28 \\
\hline 20 & A6 & 20 & A14 & 20 & A22 & 20 & A30 \\
\hline 21 & B6 & 21 & B14 & 21 & B22 & 21 & B30 \\
\hline 22 & C6 & 22 & C14 & 22 & C22 & 22 & C30 \\
\hline 23 & A8 & 23 & A16 & 23 & A24 & 23 & A32 \\
\hline 24 & \({ }^{\text {B8 }}\) & 24 & \({ }^{\text {B16 }}\) & 24 & B24 & 24 & B32 \\
\hline 25 & C8 & 25 & C16 & 25 & C24 & 25 & C32 \\
\hline
\end{tabular}

Chapter 7 Plug-in Modules
Terminals and Connections Information

\section*{N2327A Crimp and Insert Terminal Block}

This terminal is for the N2267A plug-in module only. Refer to the N2267A module wiring information (page 208) for details about the connector and pin-out assignments. The figures below illustrate how to wire and assemble this terminal.

\section*{N2320A Crimp and Insert Terminal Block}

This terminal block is for the N2270A plug-in module only. Refer to the N2270A module wiring information (page 213) for details about the connector and pin-out assignments. The figures below illustrate how to wire and assemble this terminal.

\section*{Chapter 7 Plug-in Modules}

\section*{Terminals and Connections Information}

The strain relief clamp can be used to tighten wires with additional insulation around them. Additional insulation should be used around the wires to prevent possible damage caused by the strain relief clamp.

\section*{4448X Screw Terminal Connector Blocks}

Screw terminal connectors are available for the 44470A, 44471A, 44473A, 44474A, 44475A, and 44477A plug-in modules. One of these terminals is shipped with each plug-in module. Refer to the specific plugin module wiring information for details about the connector and pin-out assignments. The figures below shows the basic steps to wire and assemble this type of terminal.

CORRECT

INCORRECT

\section*{4448x Screw Terminal Blocks}

Screw terminal blocks are available for the 44470D and 44471D plug-in modules. One of theseterminals is shipped with each plug-in module. Refer to the specific plug-in module wiring information for details about the terminal block. The figures below shows the basic steps to wire and assemble this type of terminal.

\section*{Application Programs}

\section*{Application Programs}

This chapter provides example programs in Visual \(C++\), Visual BASIC and BASIC to help you devel op programs for your specific application. Chapter contents include:
- Visual C++Example Program, on page 291
- Visual BASIC Example Program, on page 293
- VB.net Example Program, on page 296
- BASIC Example Program, on page 298

\section*{Note}

For the example programs provided in this chapter to run properly, make sure that your system has been properly setup according to the requirements of the individual example.

\section*{Visual C++Example Program}

This example program is written in Visual C ++6.0 and has been tested on a PC running WIN95/NT. The example uses the SCPI commands. As the example is currently written, the program requirements are:
- GPIB interface selected and set to the address of 09 from the frontpanel;
- Any one of the relay modules installed in Slot 1 of the mainframe;
- A GPIB interface card installed in your PC with the VISA library.

To program a 3499A/B/C using the RS-232 interface, you will need to modify the code at the top of the program. Change the line \# define USING_RS232 o to \# define USING_RS232 1. On the 3499A/B/C, select the RS-232 interface and set its parameters to: BAUD RATE (9600), PARITY (NONE, 8 BITS), and FLOW (FLOW NONE). A GPIB card in your PC is not necessary if you are using RS-232.
```


# include <stdio.h>

# include <windows.h>

# include "visa.h"

# define USING_RS232 0 // Change 0 to 1 if RS-232 interface

    // is to be used.
    
# if USING_RS232

# define INST__ADDR"ASRL1::INSTR"// 3499A/B/C RS-232 address.

# else

# define INST_ADDR"GPIB0::9::INSTR"// 3499A/B/C GPIB address.

# endif

void main()
{
ViSession drm; // Session to default resource manager.
ViSession vi; // Session to instrument.
ViStatus status; // VISA function status return code.
char retStr[128]; // String returned from the instrument.
/* Open the default resource manager. */
status = viOpenDefaultRM( \&drm );
if ( status < VI_SUCCESS ) {
printf( "VISA ERROR: viOpenDefaultRM()\n");
exit(1);
}
/* Open a session to the 3499A/B/C. */
status = viOpen( drm, INST_ADDR, VI_NULL, VI_NULL, \&vi );
if ( status < VI_SUCCESS ) {
printf( "VISA ERROR: viOpen(). Address: %s\n",INST_ADDR);
viClose( drm );
exit(1);
}

```

\section*{Chapter 8 Application Programs}

\section*{Visual C++ Example Program}
```


# if USING_RS232

/* Set RS-232 parameters according to 3499A/B/C settings:
BAUD RATE (9600), */
/* PARITY (NONE, 8 BITS), FLOW (FLOW NONE). */
viSetAttribute( vi, VI_ATTR_ASRL_BAUD, 9600 );
viSetAttribute( vi, VI_ATTR_ASRL_DATA_BITS, 8 );
viSetAttribute( vi, VI_ATTR_ASRL_FLOW_CNTRL, VI_ASRL_FLOW_NONE );
viSetAttribute( vi, VI_ATTR_ASRL_PARITY, VI_ASRL_PAR_NONE );

# endif

/* Set 3499A/B/C to SCPI mode. */
viPrintf( vi, "SYSMODE SCPI\n" );
Sleep(4000);// Wait 4 seconds.
/* Reset the instrument to a known state. */
viPrintf( vi, "*RST\n" );
Sleep(4000 );
/* Close channels 100 through 103.
viPrintf( vi, "CLOSE (@ 100:103)\n" );
/* Open channels 100 through 103. */
viPrintf( vi, "OPEN (@ 100:103)\n" );
/* Scanning setup: executing the following commands to make
the instrument to scan sweep */
/* channels 100 through 103 two times. The channels are scanned
continuously and the second scan sweep starts 1 second after
the start of the first scan sweep. */
viPrintf( vi, "SCAN (@ 100:103)\n" );// Create a scan list.
viPrintf( vi, "ARM:SOURCE TIMER\n" );// Set arm source to TIMER.
viPrintf( vi, "ARM:TIMER 1\n" );// Interval time between two scan
// sweeps is 1 second.
viPrintf( vi, "ARM:COUNT 2\n" );// Set scan sweep 2 times.
viPrintf( vi, "TRIG:SOURCE IMM\n" );// Set trigger source to
// IMM (default).
viPrintf( vi, "CHAN:DELAY 0, ( @100:103)\n");// Set channel delay
//time to O (default).
viPrintf( vi, "INIT\n");// Start the scan.
/* Set visa time-out value to 10 seconds. */
viSetAttribute( vi, VI_ATTR_TMO_VALUE, 10000 );
/* *OPC command will wait until scan finishes. */
status = viQueryf( vi, "*OPC?\n","%t*", retStr );
printf("Scan End.\n");
viClose( vi );// Close session to 3499A/B/C.
viClose( drm );// Close session to the resource manager.

```

\section*{Visual BASIC Example Program}

This example program is written in Visual BASIC 6.0 and has been tested on a PC running WIN95/NT. The example uses the SCPI commands. As the example is currently written, the program requirements are:
- GPIB interface selected and set to the address of 09 from the frontpanel;
- Any one of the relay modules installed in Slot 1 of the mainframe;
- A GPIB interface card installed in your PC with the VISA library.

To program a 3499A/B/C using the RS-232 interface, you will need to modify the code at the top of the program. Change the line Const USING_RS232 \(=0\) to Const USING_RS232 \(=1\). On the 3499A/B/C, select the RS-232 interface and set its parameters to: BAUD RATE (9600), PARITY (NONE, 8 BITS), and FLOW (FLOW NONE). A GPIB card in your PC is not necessary if you are using RS-232.
```

Const USING_RS232 =0' Change 0 to 1 if RS-232 interface is to be used.
' Sleep( ) function declaration.
Declare Sub Sleep Lib "Kernel32" (ByVal s As Long)
Sub main()
Dim drm As Long ', Session to default resource manager.
Dim vi As Long ' Session to instrument.
Dim status As Long ' VISA function status return code
Dim retStr As String * 128' String returned from the instrument.
Dim str As String ' String for individual channel number.
On Error GoTo ErrorHandler
' Open default resource manager.
drm = -1
status = viOpenDefaultRM(drm)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler
' Select an interface for 3499A/B/C.
' GPIB interface is used when USING_RS232 = 0,
' or RS-232 interface is used when USING_RS232 = 1.
If USING_RS232 Then
INST_ADDR = "ASRL1::INSTR"
Else
INST_ADDR = "GPIB0::9::INSTR"
Endif
' Open a session to 3499A/B/C.
status = viOpen(drm, INST_ADDR, 0, 0, vi)
If (status < VI_SUCCESS) Then GoTo VisaErrorHandler

```

\section*{Chapter 8 Application Programs Visual BASIC Example Program}
```

    ' Set RS-232 interface parameters when USING_RS232 equals 1.
    If USING_RS232 Then
    Call viSetAttribute(vi, VI_ATTR_ASRL_BAUD, 9600)
    Call viSetAttribute(vi, VI_ATTR_ASRL_DATA_BITS, 8)
    Call viSetAttribute(vi, VI_ATTR_ASRL_STOP_BITS,_
    VI_ASRL_STOP_ONE)
Call viSetAttribute(vi, VI_ATTR_ASRL_FLOW_CNTRL,_
VI_ASRL_FLOW_NONE)
Call viSetAttribute(vi, VI_ATTR_ASRL_PARITY, VI_ASRL_PAR_NONE)
End If
' Set the 3499A/B/C to SCPI mode.
Call viVPrintf(vi, "SYSMODE SCPI" + Chr$(10), 0)
    Call Sleep(4000) ' Wait 4 seconds
    ' Reset the instrument to a known state.
    Call viVPrintf(vi, "*RST" + Chr$(10), 0)
Call Sleep(4000)
' Close channels 100 through 103.
Call viVPrintf(vi, "CLOSE ( @ 100:103)" + Chr$(10), 0)
    ' Open channels 100 through 103.
    Call viVPrintf(vi, "OPEN ( @ 100:103)" + Chr$(10), 0)
' Scanning setup: the following commands make the instrument scan
' channels 100 through 103 two times. The channels are scanned
' continuously and the second scan sweep starts 1 second after the
' start of the first scan sweep.
' Create a scan list 100 through 103.
Call viVPrintf(vi, "SCAN (@100:103)" + Chr$(10), 0)
' Set arm source to TIMER.
    Call viVPrintf(vi, "ARM:SOURCE TIMER" + Chr$(10), 0)
' Interval time between two scan sweeps is 1 second.
Call viVPrintf(vi, "ARM:TIMER 1" + Chr$(10), 0)
' Set scan sweep two times.
    Call viVPrintf(vi, "ARM:COUNT 2" + Chr$(10), 0)
' Set trigger source to IMM (default).
Call viVPrintf(vi, "TRIG:SOURCE IMM" + Chr$(10), 0)
' Set trigger source to IMM (default).
    Call viVPrintf(vi, "CHAN:DELAY 0, (@100:103)" + Chr$(10), 0
' Start scanning.
Call viVPrintf(vi, "INIT" + Chr$(10), 0)
' Set visa time-out value to 10 seconds
    Call viSetAttribute(vi, VI_ATTR_TMO_VALUE, 10 * 1000)
' *OPC command will wait until scan finished.
    Call viVQueryf(vi, "*OPC?" + Chr$(10), "%t*", retStr)
viClose (vi)' Close session to 3499A/B/C.
viClose (drm)' Close session to default resource manager.
End

```
```

ErrorHandler:
' Display the error message.
MsgBox "*** Error : " + Error\$, MB_ICON_EXCLAMATION
If drm <> -1 Then
viClose (drm)
End If
End
VisaErrorHandler:
Dim strVisaErr As String * 200
Call viStatusDesc(defrm, status, strVisaErr)
MsgBox "*** Error : " + strVisaErr
If drm <> -1 Then
viClose (drm)
End If
End
End Sub

```

Chapter 8 Application Programs

\section*{VB.net Example Program}

\section*{VB.net Example Program}

This example is written in VB.net. The example includes Open, Close, Self-test, Digital I/O, and Scan commands for the 3499A/B/C using the Agilent T\&M Toolkit in VB.net (Visual Basic). As the example is currently written, the program requirements are:
- GPIB interface selected and set to the address of 09 from the frontpanel;
- A GPIB interface card installed in your PC with the VISA library;
- An Agilent N2265A installed in Slot 1 of the mainframe;
- The Agilent T\&M Toolkit installed on your PC.
```

Imports Agilent.TMFramework
Imports Agilent.TMFramework.InstrumentIO
Public Class Form1
Inherits System.Windows.Forms.Form
\#Region " Windows Form Designer generated code "
Private myDirectIO As DirectIO
Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
'Create DirectIO object.
myDirectIO = New DirectIO("GPIB0::9::INSTR", False, 2000)
myDirectIO.Timeout = 2000
End Sub
Private Sub Selftestbtn_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Selftestbtn.Click
'Send *TST (Selftest) command to the 3499.
myDirectIO.WriteLine("*tst?")
Timing.Delay(10000000)
'Read results
Dim Results As String
Results = myDirectIO.Read()
Textbox1.Text = Results
End Sub
Private Sub Results_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Textbox1.TextChanged
End Sub

```
```

    'This example closes/opens multiple switches within a 4x4 Matrix.
    'The switches can be controlled within one command line or listed
    'separtely.
    Private Sub Closebtn_Click(ByVal sender As System.Object, _
    ByVal e As System.EventArgs) Handles Closebtn.Click
myDirectIO.WriteLine("CLOS (@120,123)")
End Sub
Private Sub Openbtn_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Openbtn.Click
myDirectIO.WriteLine("OPEn (@120)")
myDirectIO.WriteLine("OPEn (@123)")
End Sub
'Digital Input/Output - on power up or after Reset all Digital I/O
'ports in the 3499 will be input ports. Mode 1 is default mode.
Private Sub DigIObtn_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles DigIObtn.Click
myDirectIO.WriteLine("SENSE:DIGITAL:DATA:BYTE:VALue? 140")
'Read the Digital Input results 8 bits (1 byte), binary value is
'displayed.
Dim Digitalin As String
Digitalin = myDirectIO.Read()
TextBox2.Text = Digitalin
End Sub
'Create and execute a scan list
Private Sub Scanbtn_Click(ByVal sender As System.Object, _
ByVal e As System.EventA
myDirectIO.WriteLine("SCAN (@200:209,220:225)")
myDirectIO.WriteLine("INIT")
myDirectIO.WriteLine("SCAN:LIST?")
Dim Scanresults As String
Scanresults = myDirectIO.Read()
Scanlst.Text = Scanresults
End Sub
End Class

```

Chapter 8 Application Programs BASIC Example Program

\section*{BASIC Example Program}

Sample programs in this section are written in BASIC 6.0 and have been tested on a UNIX workstation.

Requirements:
- GPIB interface selected and set to the address of 09 from the frontpanel;
- Any one of the relay modules installed in Slot 1 of the mainframe;
- A GPIB interface card installed in your UNIX workstation.

\section*{Note}

Either GPIB or RS-232 interface can be used in SCPI mode. However, we only provide and test the BASIC program examples over the GPIB interface.
```

10 ! EXAMPLE.BAS: TEST 3499A/B/C IN SCPI MODE
20 DIM Retstr$[128]! String returned from the instrument.
30 OUTPUT 709; "SYSMODE SCPI"! Set 3499A/B/C to SCPI mode.
40 WAIT 4! Wait 4 seconds.
50 OUTPUT 709; "*RST"! Reset 3499A/B/C.
60 WAIT 4! Wait 4 second.
70 OUTPUT 709; "CLOSE (@100:103)"! Close channels 100 through 103.
80 OUTPUT 709; "OPEN (@100:103)"! Open channels 100 through 103.
100 ! LINES 150 TO 200 SET UP A TIMER CONTROLLED SCANNING.
110! 3499A/B/C SCAN SWEEP CHANNELS 100 THROUGH 139 TWO TIMES.
120! THE CHANNELS ARE SCANNED CONTINUOUSLY.
130! THE SECOND SCAN SWEEP STARTS 1 SECOND AFTER THE START
140 ! OF THE FIRST SCAN SWEEP.
150 OUTPUT 709; "SCAN (@100:103)"! Create a scan list.
160 OUTPUT 709; "ARM:SOUR TIMER"! Set arm source to timer.
170 OUTPUT 709; "ARM:TIMER 1"! Interval time between two scan sweeps
    ! is 1 second.
180 OUTPUT 709; "ARM:COUNT 2"! Set scan sweep 2 times.
1 9 0 \text { OUTPUT 709; "TRIG:SOUR IMM"! Set trigger source to IMM (default).}
200 OUTPUT 709; "CHAN:DELAY 0, (@100:103)"! Set channel delay time
                                    !to 0 (default).
210 OUTPUT 709; "INIT"! Start scanning
220 OUTPUT 709; "*OPC?"! Wait until scan finishes.
230 ENTER 709; Retstr$
240 Done: END

```

\section*{Specifications}

\section*{Specifications}

Specification for the mainframe and all plug-in modules are given in this chapter for easy reference. This chapter includes:
- 3499A/B/C Mainframe, on page 301
- N2260A 40-Channel MUX Module, on page 303
- N2261A 40-Channel GP Relay Module, on page 305
- N2262A \(4 \times 8\) 2-Wire Matrix Switch Module, on page 307
- N2263A 32-bit Digital I/O M odule, on page 309
- N2264A Multifunction Module, on page 310
- N2265A Multifunction Module, on page 313
- N2266A 40-Channel MUX Module, on page 315
- N2267A 8-Channel High Current GP Module, on page 317
- N2268A \(50 \Omega\) 3.0 GHz Dual 1-to-4 MUX M odule, on page 319
- N2270A 10-Channel High Voltage MUX M odule, on page 321
- N2272A 1 GHz RF 1-to-9 MUX M odule, on page 323
- N 2276A Dual 1-to-6(4) Microwave M U X/Attenuator M odule, on page 325
- N2276B Microwave MUX/Attenuator Module, on page 325
- N2280A Quadruple 1-to-2 Optical Switch Module, on page 326
- N2281A Dual 1-to-4 Optical Switch M odule, on page 327
- N2282A 1-to-8 Optical Switch Module, on page 328
- 44470A 10-Channel MUX M odule, on page 329
- 44470D 20-Channel M UX M odule, on page 331
- 44471A 10-Channel GP Relay Module, on page 333
- 44471D 20-Channel GP Relay Module, on page 335
- 44472A Dual 4-Channel VHF Switch Module, on page 337
- 44473A \(4 \times 4\) 2-Wire Matrix Switch Module, on page 339
- 44474A 16-Bit Digital I/O M odule, on page 341
- 44475A Breadboard Module, on page 342
- 44476A Microwave Switch Module, on page 344
- 44476B Microwave Switch Module, on page 344
- 44477A Form-C Relay Module, on page 345
- 44478A/B 1.3 GHz Dual 4-to-1 MUX Modules, on page 347

\section*{3499A/B/C Mainframe}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{■ GENERAL} \\
\hline Power Supply: & For 3499A/B: 100 to 240 VAC universal input; 47 Hz to 440 Hz ; 90 VA maximum; For 3499C: 100 to 240 VAC universal input; 47 Hz to \(63 \mathrm{~Hz} ; 140 \mathrm{VA}\) maximum. \\
\hline Operating Environment: & 0 to \(55^{\circ} \mathrm{C}\left(32\right.\) to \(131^{\circ} \mathrm{F}\)); \(<80 \% \mathrm{RH}, 0\) to \(40^{\circ} \mathrm{C}\) (32 to \(104^{\circ} \mathrm{F}\)). \\
\hline Storage Environment: & -40 to \(+70^{\circ} \mathrm{C}\left(-40\right.\) to \(\left.158^{\circ} \mathrm{F}\right)\). \\
\hline Net Weight: & 3499A: 3.8 kg (8.4 lbs); 3499B: 2.5 kg (5.5 lbs); 3499C: 7.4 kg (16.4 lbs). \\
\hline Dimensions: & \\
\hline Safety: & Conforms to CSA, UL-1244, IEC 1010 Cat I. \\
\hline RFI and ESD: & CISPR 11, IEC 801/2/3/4. \\
\hline \multicolumn{2}{|l|}{■SYSTEM} \\
\hline Capacity: & \begin{tabular}{l}
3499A: 5 slots; \\
3499B: 2 slots; \\
3499C: electrically 9 slots \\
(Slot \(1 \sim 6\) are 1 -slot width, Slot 7 is 2 -slot width, Slot \(8 \sim 9\) are 3 -slot width).
\end{tabular} \\
\hline Display: & Vacuum fluorescent, 13 characters can be displayed simultaneously. \\
\hline Rear Panel Connectors: & \begin{tabular}{l}
GPIB (IEEE 488); RS-232; \\
8-pin Mini DIN connector \\
(built-in 4-bit Digital I/O \& built-in external trigger in/out).
\end{tabular} \\
\hline Memory: & \begin{tabular}{l}
For 3499A/B mainframe with Controller board 1.0 (Firmware REV 1.0/2.0/3.0): Capable of storing 10 instrument setups and 10 errors in SCPI mode or 40 instrument setups and 1 error in 3488A mode. \\
For 3499A/B/C mainframe with Controller board 2.0 (Firmware REV 4.0 or later): Capable of storing 50 instrument setups and 10 errors in SCPI mode or 40 instrument setups and 1 error in 3488A mode.
\end{tabular} \\
\hline
\end{tabular}

Chapter 9 Specifications
3499A/B/C Mainframe

\section*{SYSTEM (continued)}
\begin{tabular}{|c|c|}
\hline Switch Setting Time: & Automatically selected by the mainframe for individual modules; Additional time from 0 to 99999.999 seconds can be added in 1 ms steps. \\
\hline Arm Source: & \begin{tabular}{l}
External trigger (from the rear panel Mini DIN connector); \\
IEEE-488 bus (GET, *TRG, or pressing Step from the front-panel); \\
Software (TRIGger:IMM); \\
Internal timer (programmable as 0 to 99999.999 seconds in 1 ms steps).
\end{tabular} \\
\hline Trigger Source: & \begin{tabular}{l}
External trigger (from the rear panel Mini DIN connector); \\
IEEE-488 bus (GET, *TRG, or pressing Step from the front-panel); \\
Software (Trigger:IMM); \\
Internal timer (programmable as 0 to 99999.999 seconds in 1 ms steps).
\end{tabular} \\
\hline External Trigger Input: & \begin{tabular}{l}
Level: TTL compatible; \\
Minimum trigger pulse width: \(2 \mu \mathrm{~s}\); Maximum external trigger delay \({ }^{\text {a }}: 2 \mathrm{~ms}\).
\end{tabular} \\
\hline External Trigger Output: & \begin{tabular}{l}
Level: Normally pull up to 5 V ; \\
Sink current: \(10 \mathrm{~mA} @ \mathrm{~V}_{0}(\) Low \() \leq 0.4 \mathrm{~V} ; 80 \mathrm{~mA} @ \mathrm{~V}_{0}(\) Low \() \leq 0.8 \mathrm{~V}\); Low going pulse width: \(10 \mu \mathrm{~s}\) typical.
\end{tabular} \\
\hline \begin{tabular}{l}
Built-in 4-bit \\
Digital I/O:
\end{tabular} & \begin{tabular}{l}
Input: TTL compatible; \\
Output: \(\mathrm{V}_{0}(\) high \() \geq 2.4 \mathrm{~V} @ \mathrm{I}_{0}=1 \mathrm{~mA} ; \mathrm{V}_{0}(\) Low \() \leq 0.8 \mathrm{~V} @ \mathrm{I}_{\mathrm{o}}=-100 \mathrm{~mA}\); Maximum \(\mathrm{V}_{\mathrm{o}}=42 \mathrm{~V}\), with external pull-up.
\end{tabular} \\
\hline
\end{tabular}

■ SYSTEM SPEED \({ }^{\text {b }}\)
\begin{tabular}{|c|c|c|}
\hline Scan Speed: & \multicolumn{2}{|l|}{350 chans/sec (N2266A)} \\
\hline Parser Time \({ }^{\text {c }}\) : & \begin{tabular}{ll}
Open (@100): & 3 ms \\
Close (@100): & 3 ms \\
Open (@100:139): & 4 ms
\end{tabular} & \\
\hline Switching Speed: & \begin{tabular}{lc}
& Channels \\
Open/Close: & 1 \\
Open/Close: & 10 \\
Open/Close: & 40
\end{tabular} & \begin{tabular}{l}
Time (ms) \\
7.1 (N2266A) \\
22.0 (N2266A, in the same group) \\
28.9 (N2266A)
\end{tabular} \\
\hline Digital I/O Block Transfer Rate: & \multicolumn{2}{|l|}{20K bytes/sec (long word)} \\
\hline
\end{tabular}
a. Maximum time from activation of external trigger pulse to start of switch open or close.
b. The system speed specification may vary in a small range due to the speed of the remote PC, the GPIB module, the version of VISA and the version of 3499A/B/C's firmware used.
c. Measured from the time at which the command terminator is taken from the bus to the time at which the relay begins to open or close.

N2260A 40-Channel MUX Module

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|}
\hline Total Channels: & 80 1-wire; or 40 2-wire; or dual 20 2-wire; or 20 4-wire \\
\hline Maximum Voltage: & Terminal-Terminal or \(\quad 200 \mathrm{~V}\), dc or ac rms
Terminal-Chassis: \\
\hline Maximum Current: & \begin{tabular}{ll}
Per Channel: & 1 A, dc or ac rms \\
Per Module: & \(2 \mathrm{~A}, \mathrm{dc}\) or ac rms
\end{tabular} \\
\hline Maximum Power: & \begin{tabular}{ll}
Per Channel: & \(60 \mathrm{~W} \mathrm{dc} ; 62.5 \mathrm{VA}\) ac \\
Per Module: & \(120 \mathrm{~W} \mathrm{dc} ; 125 \mathrm{VA}\) ac
\end{tabular} \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential or single-ended \\
\hline Initial Closed Channel Resistance: & \(<1 \Omega\) \\
\hline Relay Life: & \begin{tabular}{ll}
Mechanical: & \(10^{8}\) (at 36000 operations/hour) \\
Electrical: & \(5 \times 10^{5}(1 \mathrm{~A}\) load \()\)
\end{tabular} \\
\hline Maximum Scan Rate: & 80 Chans/sec \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\) & \(>10^{9} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(\gg 10^{10} \Omega\) \\
\hline \begin{tabular}{lll}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular}

AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, ChannelChannel: \\
HI-LO: \\
Channel-Chassis:
\end{tabular} & \[
\begin{aligned}
& <7 \mathrm{pF} \text { (2-wire); } \\
& <75 \mathrm{pF} \text { (2-wire); } \\
& <150 \mathrm{pF} \text { (2-wire); }
\end{aligned}
\] & \[
\begin{aligned}
& <7 \mathrm{pF} \text { (dual 2-wire) } \\
& <45 \mathrm{pF} \text { (dual 2-wire) } \\
& <90 \mathrm{pF} \text { (dual 2-wire) }
\end{aligned}
\] \\
\hline Insertion Loss: (with \(50 \Omega\) termination) & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& <0.10 \mathrm{~dB} \\
& <0.20 \mathrm{~dB} \\
& <1.50 \mathrm{~dB}
\end{aligned}
\] & \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& <-70 \mathrm{~dB} \text { (2-wire); } \\
& <-50 \mathrm{~dB} \text { (2-wire); } \\
& <-30 \mathrm{~dB} \text { (2-wire); }
\end{aligned}
\] & \[
\begin{aligned}
& <-40 \mathrm{~dB} \text { (1-wire) } \\
& <-25 \mathrm{~dB} \text { (1-wire) } \\
& \text { NA (1-wire) }
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo Terminal of the input connected to the Lo Terminal of the output (either directly or via the 3499A/B/C switching channels).

\section*{N2261A 40-Channel GP Relay Module}

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 40 & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 200 V , dc or ac rms \\
\hline Maximum Current: & Per Channel: Per Module: & 1 A , dc or ac rms 20 A , dc or ac rms \\
\hline Maximum Power: & Per Channel: Per Module: & 60 W dc ; 62.5 VA ac 1200 W dc; 1250 VA ac \\
\hline Thermal Offset: & Per Channel: & \(<3 \mu \mathrm{~V}\) \\
\hline Initial Closed Channel Resistance: & \(<0.5 \Omega\) & \\
\hline Relay Life: & Mechanical: Electrical: & \(10^{8}\) (at 36000 operations/hour) \(5 \times 10^{5}\) (1A load) \\
\hline Maximum Scan Rate: & 80 Chans/sec & \\
\hline
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \begin{array}{l}\text { Open Channel, } \\
\text { Channel-Channel: } \\
\text { (with 1 channel closed) }\end{array} & \begin{array}{l}<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right): \\
<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\end{array} & >10^{10} \Omega \\
\hline 10^{9} \Omega\end{array}\right]\)\begin{tabular}{lll}
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\) & \(>10^{9} \Omega\)
\end{tabular}

AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel- \\
Channel: \\
Channel-Chassis:
\end{tabular} & \(<10 \mathrm{pF}\) \\
\hline \multirow{2}{*}{ Insertion Loss: } & \(100 \mathrm{kHz}:\) & \(<20 \mathrm{pF}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<0.10 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<0.20 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Crosstalk: } & \(100 \mathrm{kHz}:\) & \(<0.50 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-70 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<-50 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with Low Terminal of the input connected to Low Terminal of the output (either directly or via the 3499A/B/C switching channels).

Chapter 9 Specifications

N2262A \(4 \times 8\) 2-Wire Matrix Switch Module

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & \(4 \times 8\) & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 200 V , dc or ac rms \\
\hline Maximum Current: & Per Channel: Per Module: & 1 A , dc or ac rms 4 A , dc or ac rms \\
\hline Maximum Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 60 W dc; 62.5 VA ac 240 W dc; 250 VA ac \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential & \\
\hline Initial Closed Channel Resistance: & < \(1 \Omega\) & \\
\hline Relay Life: & \begin{tabular}{l}
Mechanical: \\
Electrical:
\end{tabular} & \begin{tabular}{l}
\[
10^{8}
\] \\
(at 36000 operations/hour)
\[
5 \times 10^{5}(1 \mathrm{~A} \text { load })
\]
\end{tabular} \\
\hline Maximum Scan Rate: & 80 Chans/sec & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, Channel- \\
Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{lll}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{9} \Omega\)
\end{tabular}

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: HI-LO: \\
Channel-Chassis:
\end{tabular} & \[
\begin{aligned}
& <7 \mathrm{pF} \\
& <30 \mathrm{pF} \\
& <50 \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Insertion Loss: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& <0.10 \mathrm{~dB} \\
& <0.20 \mathrm{~dB} \\
& <0.60 \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <-73 \mathrm{~dB} \\
& <-53 \mathrm{~dB} \\
& <-28 \mathrm{~dB}
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with LowTerminal of the input connected to LowTerminal of the output (either directly or via the 3499A/B/C switching channels).

N2263A 32-bit Digital I/O Module
■ I/O LINES
\begin{tabular}{l|ll}
\hline Bit Number: & 32 & \\
\hline Maximum Voltage: & Line-Chassis: & +42 V dc \\
\hline Maximum Sink Current: & Per Bit: & 600 mA \\
\hline \multirow{2}{*}{ Output Characteristics: } & \begin{tabular}{l}
Vout (high): \\
Vout (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.4 \mathrm{~V}\) @ I \(\leq 10 \mathrm{~mA}\) output \\
\(\leq 0.8 \mathrm{~V} \mathrm{@} \mathrm{I} \mathrm{\leq 600} \mathrm{~mA} \mathrm{input}\)
\end{tabular} \\
\hline \multirow{2}{*}{ Input Characteristics: } & \begin{tabular}{l}
Vin (high): \\
Vin (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.0 \mathrm{~V}\) \\
\(\leq 0.8 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

■ HANDSHAKE LINES
\begin{tabular}{l|ll}
\hline Maximum Voltage: & Line-Chassis: & +5 V dc \\
\hline \multirow{3}{*}{ Output Characteristics: } & Vout (high): & \\
& Vout (low): & \(\geq 2.4 \mathrm{~V} @ \mathrm{I} \leq 400 \mu \mathrm{~A}\) output \\
& lout (low): & \(\leq 0.5 \mathrm{~V} @ \mathrm{I} \leq 1 \mathrm{~mA}\) input \\
& Vin (high): & \(<25 \mathrm{~mA}\) (when shorted to +5 V) \\
\hline \multirow{2}{*}{ Input Characteristics: } & Vin (low): & \(\leq 2.0 \mathrm{~V}\) \\
& \(\leq 0.8 \mathrm{~V}\) \\
\hline
\end{tabular}

Chapter 9 Specifications
N2264A Multifunction Module

\section*{N2264A Multifunction M odule}

The maximum number of channels that can be closed simultaneously is 10 (including the GP and High-Current GP relays). The maximum carrying current is 15 A (including the GP, High-Current GP and Digital I/O.

\section*{16-bit Digital I/O Function}

\section*{■I/O LINES}
\begin{tabular}{l|ll}
\hline Bit Number: & 16 & \\
\hline Maximum Voltage: & Line-Chassis: & +42 V dc \\
\hline Maximum Sink Current: & Per Bit: & 600 mA \\
\hline Output Characteristics: & \begin{tabular}{l}
Vout (high): \\
Vout (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.4 \mathrm{~V}\) @ I \(\leq 10 \mathrm{~mA}\) output \\
\(\leq 0.8 \mathrm{~V} @ \mathrm{I} \leq 600 \mathrm{~mA}\) input
\end{tabular} \\
\hline Input Characteristics: & \begin{tabular}{l}
Vin (high): \\
Vin (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.0 \mathrm{~V}\) \\
\(\leq 0.8 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

■ HANDSHAKE LINES
\begin{tabular}{l|ll}
\hline Maximum Voltage: & Line-Chassis: & +5 V dc \\
\hline \multirow{3}{*}{ Output Characteristics: } & Vout (high): & \(\geq 2.4 \mathrm{~V} @ \mathrm{I} \leq 400 \mu \mathrm{~A}\) output \\
& Vout (low): & \(\leq 0.5 \mathrm{~V}\) @ \(\leq 1 \leq \mathrm{mA}\) input \\
& lout (low): & \(<25 \mathrm{~mA}\) (when shorted to +5 V) \\
\hline \multirow{2}{*}{ Input Characteristics: } & Vin (high): & \(\geq 2.0 \mathrm{~V}\) \\
& Vin (low): & \(\leq 0.8 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{12-Channel GP Relay Function}

\section*{- INPUT CHARACTERISTICS}
\begin{tabular}{l|ll}
\hline Total Channels: & 12 & \\
\hline Maximum Voltage: & \begin{tabular}{l}
Terminal-Terminal or \\
Terminal-Chassis:
\end{tabular} & \(200 \mathrm{~V}, \mathrm{dc}\) or ac rms \\
\hline Maximum Current: & Per Channel: & \(1 \mathrm{~A}, \mathrm{dc}\) or ac rms \\
\hline Maximum Power: & Per Channel: & 60 W dc; 62.5 VA ac \\
\hline Thermal Offset: & Per Channel: & \(<3 \mu \mathrm{~V}\) \\
\hline \begin{tabular}{l}
Initial Closed Channel \\
Resistance:
\end{tabular} & \(<0.5 \Omega\) & \\
\hline Relay Life: & \begin{tabular}{l}
Mechanical: \\
Electrical:
\end{tabular} & \begin{tabular}{l}
\(10^{8}(\) at 36000 operations/hour \()\) \\
\(5 \times 10^{5}(1 \mathrm{~A}\) load)
\end{tabular} \\
\hline Maximum Scan Rate: & 80 Chans/sec & \\
\hline\(\square\) DC ISOLATION (with terminal block) &
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \\
\hline
\end{tabular}

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: \\
Channel-Chassis:
\end{tabular} & \begin{tabular}{l}
\(<10 \mathrm{pF}\) \\
\(<20 \mathrm{pF}\)
\end{tabular} \\
\hline \begin{tabular}{l}
Insertion Loss: \\
(with \(50 \Omega\) termination)
\end{tabular} & \begin{tabular}{l}
\(100 \mathrm{kHz}:\) \\
\(1 \mathrm{MHz}:\) \\
\(10 \mathrm{MHz}:\)
\end{tabular} & \begin{tabular}{l}
\(<0.10 \mathrm{~dB}\) \\
\(<0.20 \mathrm{~dB}\) \\
\(<0.50 \mathrm{~dB}\)
\end{tabular} \\
\hline Crosstalk: & \(100 \mathrm{kHz}:\) & \(<-70 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-50 \mathrm{~dB}\) \\
\(10 \mathrm{MHz}:\) & \(<-30 \mathrm{~dB}\)
\end{tabular}
a. With chassis of all instruments connected, and with LoTerminal of the input connected to Lo Terminal of the output (either directly or via the 3499A/B/C switching channels).

Chapter 9 Specifications

\section*{High-Current GP Relay Function}

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{l|ll}
\hline Total Channels: & 3 & \\
\hline Maximum Voltage: & \begin{tabular}{l}
Terminal-Terminal or \\
Terminal-Chassis:
\end{tabular} & 125 V dc or 200 V ac rms \\
\hline Maximum Current: & Per Channel: & \(5 \mathrm{~A}, \mathrm{dc}\) or ac rms \\
\hline Maximum Power: & Per Channel: & \(150 \mathrm{~W} \mathrm{dc} ; 1250 \mathrm{VA}\) ac \\
\hline Thermal Offset: & Per Channel: & \(<3 \mu \mathrm{~V}\) \\
\hline \begin{tabular}{l}
Initial Closed Channel \\
Resistance:
\end{tabular} & \(<0.1 \Omega\) & \(5 \times 10^{7}\) (at 180 cycles/minute) \\
\hline Relay Life: & \begin{tabular}{l}
Mechanical: \\
Electrical:
\end{tabular} & \\
\hline Time to Close One Channel: & 16 mS & \\
\hline\(\square\) DC ISOLATION (with terminal block) &
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \begin{array}{l}\text { Open Channel, } \\
\text { Channel-Channel: } \\
\text { (with } 1 \text { channel closed) }\end{array} & \begin{array}{l}<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right): \\
<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\end{array} & >10^{10} \Omega \\
>10^{9} \Omega\end{array}\right]\)\begin{tabular}{ll}
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} \\
\hline
\end{tabular}

■ AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: \\
Channel-Chassis:
\end{tabular} & \begin{tabular}{l}
\(<10 \mathrm{pF}\) \\
\(<20 \mathrm{pF}\)
\end{tabular} \\
\hline \multirow{2}{*}{\begin{tabular}{l}
Insertion Loss: \\
(with \(50 \Omega\) termination)
\end{tabular}} & \(100 \mathrm{kHz}:\) & \(<0.10 \mathrm{~dB}\) \\
& \(1 \mathrm{MHz}:\) & \(<0.20 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<0.50 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Crosstalk: } & \(100 \mathrm{kHz}:\) & \(<-70 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-50 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<-30 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with LoTerminal of the input connected to LoTerminal of the output (either directly or via the 3499A/B/C switching channels).

N2265A Multifunction Module
4 X 4 Matrix Function

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & \(4 \times 4\) & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 200 V , dc or ac rms \\
\hline Maximum Current: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & \(1 \mathrm{~A}, \mathrm{dc}\) or ac rms 4 A , dc or ac rms \\
\hline Maximum Power: & Per Channel: Per Module: & 60 W dc; 62.5 VA ac 240 W dc; 250 VA ac \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential & \\
\hline Initial Closed Channel Resistance: & \(<1 \Omega\) & \\
\hline Relay Life: & Mechanical: Electrical: & \[
\begin{aligned}
& 10^{8} \text { (at } 36000 \text { operations/hour) } \\
& 5 \times 10^{5}(1 \mathrm{~A} \text { load })
\end{aligned}
\] \\
\hline Maximum Scan Rate: & 80 Chans./sec & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, Channel- \\
Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{9} \Omega\) \\
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\hline\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\hline
\end{tabular}

Chapter 9 Specifications
N2265A Multifunction Module

AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\) (without terminal block)
\begin{tabular}{l|ll}
\hline \multirow{2}{*}{\begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular}} & \begin{tabular}{l}
Open Channel, Channel-Channel: \\
HI-LO: \\
Channel-Chassis:
\end{tabular} & \begin{tabular}{l}
\(<7 \mathrm{pF}\) \\
\(<25 \mathrm{pF}\) \\
\(<40 \mathrm{pF}\)
\end{tabular} \\
\hline \multirow{2}{*}{ Insertion Loss: } & \(100 \mathrm{kHz}:\) & \(<0.10 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<0.20 \mathrm{~dB}\) \\
& 10 MHz & \(<0.60 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Crosstalk: } & \(100 \mathrm{kHz}:\) & \(<-76 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-56 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<-33 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with Lo Terminal of the input connected to Lo Terminal of the output (either directly or via the 3499A/B/C switching channels).

\section*{16-bit Digital I/O F unction}

I/O LINES
\begin{tabular}{l|ll}
\hline Number of Bits: & 16 & \\
\hline Maximum Voltage: & Line-Chassis: & +42 V dc \\
\hline Maximum Sink Current: & Per Bit: & 600 mA \\
\hline \multirow{2}{*}{ Output Characteristics: } & \begin{tabular}{l}
Vout (high): \\
\\
\\
Vout (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.4 \mathrm{~V} @\) I \(\leq 10 \mathrm{~mA}\) output \\
\(\leq 0.8 \mathrm{~V} \mathrm{@} \mathrm{I} \mathrm{\leq 600} \mathrm{~mA} \mathrm{input}\)
\end{tabular} \\
\hline Input Characteristics: & \begin{tabular}{l}
Vin (high): \\
Vin (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.0 \mathrm{~V}\) \\
\(\leq 0.8 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

■ HANDSHAKE LINES
\begin{tabular}{l|ll}
\hline Maximum Voltage: & Line-Chassis: & +5 V dc \\
\hline \multirow{3}{*}{ Output Characteristics: } & Vout (high): & Vout (low): \\
& lout (low): & \(\geq 2.4 \mathrm{~V} @ \mathrm{I} \leq 400 \mu \mathrm{~A}\) output \\
& Vin (high): & \(<25 \mathrm{~V} @\) I \(\leq 1 \mathrm{~mA}\) input \\
\multirow{2}{*}{ Input Characteristics: } & Vin (low): & \(\geq 2.0 \mathrm{~V}\) \\
& & \(\leq 0.8 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{N2266A 40-Channel MUX M odule}

■ INPUT CHARACTERISTICS

\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\) & \(>10^{9} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline Channel-Chassis: & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \(>10^{9} \Omega\)
\end{tabular}

Chapter 9 Specifications
N2266A 40-Channel MUX Module

\section*{AC CHARACTERISTICS \({ }^{\text {a }}\)}
\begin{tabular}{|c|c|c|}
\hline Bandwidth (-3dB): & \multicolumn{2}{|l|}{40 MHz} \\
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed) \\
(2-wire)
\end{tabular} & Open Channel, Channel-Channel: Channel-Chassis:
HI-LO: & \[
\begin{aligned}
& <7 \mathrm{pF} \\
& <140 \mathrm{pF} \\
& <50 \mathrm{pF}
\end{aligned}
\] \\
\hline Insertion Loss: (with \(50 \Omega\) termination) & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}: \\
& 40 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& 0.2 \mathrm{~dB} \\
& 0.3 \mathrm{~dB} \\
& 2.0 \mathrm{~dB} \\
& 3.0 \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& -75 \mathrm{~dB} \\
& -55 \mathrm{~dB} \\
& -33 \mathrm{~dB}
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo Terminal of the input connected to the Lo Terminal of the output (either directly or via the \(3499 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) switching channels).

N 2267A 8-Channel High Current GP M odule

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 8 & \\
\hline Maximum Switching Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 VAC, 125 VDC \\
\hline Maximum Switching Current: & Per Channel: Per Module: & \[
\begin{aligned}
& 8 \mathrm{~A} \\
& 64 \mathrm{~A}
\end{aligned}
\] \\
\hline Maximum Switching Power: & Per Channel: Per Module: & 2000 VA, 150 W 16000 VA, 1200 W \\
\hline Thermal Offset: & Per Channel: & \(3 \mu \mathrm{~V}\) \\
\hline Initial Closed Channel Resistance: & < \(0.08 \Omega\) & \\
\hline Relay Life: & Mechanical: Electrical: & \[
\begin{aligned}
& \left.5 \times 10^{7} \text { (at } 180 \mathrm{cpm}\right) \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: & \multicolumn{2}{|l|}{20 Chans/sec} \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline Channel-Chassis: & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) & \\
\hline \begin{tabular}{l}
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\hline
\end{tabular}

AC CHARACTERISTICS \({ }^{\text {a }}\)
\(\left.\begin{array}{l|ll}\hline \begin{array}{l}\text { Capacitance: } \\
\text { (with } 1 \text { channel closed) }\end{array} & \begin{array}{l}\text { Open Channel, Channel-Channel: } \\
\text { Channel-Chassis: }\end{array} & \begin{array}{l}<10 \mathrm{pF} \\
<10 \mathrm{pF}\end{array} \\
\hline \begin{array}{l}\text { Insertion Loss: } \\
\text { (with } 50 \Omega \text { termination) }\end{array} & 100 \mathrm{kHz}: & 0.10 \mathrm{~dB} \\
1 \mathrm{MHz}: & 0.20 \mathrm{~dB}\end{array}\right]\)\begin{tabular}{lll}
\hline Crosstalk: & \(100 \mathrm{kHz}:\) & -75 dB \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & -55 dB \\
\hline \multicolumn{2}{l}{ Environmental Conditions }
\end{tabular}
\begin{tabular}{l|l}
\hline \begin{tabular}{l}
Operating Pollution \\
Degree:
\end{tabular} & 2 \\
\hline Operating Altitude: & 3000 meters \((10,000 \mathrm{ft})\) \\
\hline \begin{tabular}{l}
Measurement \\
Category:
\end{tabular} & \(\mathrm{I}, 1500 \mathrm{Vpk}\) transient, 500 V over voltage transient \\
\hline \begin{tabular}{l}
Operating \\
Temperature:
\end{tabular} & \(0-55^{\circ} \mathrm{C}\) \\
\hline Operating Humidity: & \(<80 \% \mathrm{RH}\left(0^{\circ} \mathrm{C}\right.\) to \(\left.40^{\circ} \mathrm{C}\right)\), non-condensing \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with Lo Terminal of the input connected to Lo Terminal of the output (either directly or via the \(3499 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) switching channels)

N 2268A \(50 \Omega 3.0 \mathrm{GHz}\) Dual 1-to-4 M U X M odule

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & \multicolumn{2}{|l|}{Dual 1-to-4 Chans} \\
\hline Maximum Switching Voltage: & Any center/shield to any other center/shield/chassis: & 30 V , dc or peak AC \\
\hline Maximum Switching Current: & Per Channel: Per Module: & \begin{tabular}{l}
0.5 A , dc or peak AC \\
1 A , dc or peak AC
\end{tabular} \\
\hline Maximum Switching Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & \[
\begin{aligned}
& 10 \mathrm{~W} \\
& 20 \mathrm{~W}
\end{aligned}
\] \\
\hline Characteristic Impedance: & \(50 \Omega\) & \\
\hline Relay Life: & \begin{tabular}{l}
Mechanical: \\
\(10 \mathrm{~mA} / 24 \mathrm{VDC}\) resist. load: 10W 2.5G 50 :
\end{tabular} & \[
\begin{aligned}
& 5 \times 10^{6} \\
& 3 \times 10^{5} \\
& 10^{5}
\end{aligned}
\] \\
\hline Thermal Offset: & Per Channel: & \(3 \mu \mathrm{~V}\) \\
\hline Initial Closed Channel Resistance: & <1 \(\Omega\) & \\
\hline Maximum Scan Rate: & 20 Chans/sec & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 Channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 Channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 Channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{9} \Omega\) \\
\hline
\end{tabular}

Chapter 9 Specifications
N2268A \(50 \Omega 3.0 \mathrm{GHz}\) Dual 1-to-4 MUX Module

\section*{AC CHARACTERISTICS \({ }^{\text {a }}\)}
\begin{tabular}{l|ll}
\hline Bandwidth (-3dB): & \(50 \Omega\) source, \(50 \Omega\) termination: & 3.0 GHz \\
\hline & & \\
Insertion Loss: & \(1 \mathrm{GHz}:\) & 0.9 dB \\
(with \(50 \Omega\) termination) & \(2 \mathrm{GHz}:\) & 1.2 dB \\
& \(3.0 \mathrm{GHz}:\) & 1.7 dB \\
\hline & & \\
\hline Crosstalk: & DC-2 GHz: & -64 dB \\
(with \(50 \Omega\) termination) & \(2 \mathrm{GHz-3.0} \mathrm{GHz}:\) & -50 dB \\
\hline \multirow{3}{*}{ VSWR: } & \(1 \mathrm{GHz}:\) & 1.20 \\
& \(2 \mathrm{GHz}:\) & 1.35 \\
\hline \multirow{2}{*}{ Capacitance: } & \(3.0 \mathrm{GHz}:\) & 1.35 \\
\hline Rise Time: & Center-Shield: & 20 pF \\
& Center-Center: & 0.06 pF \\
\hline Signal Delay: & \(<150 \mathrm{ps}\) & \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with Lo Terminal of the input connected to Lo Terminal of the output (either directly or via the 3499A/B/C switching channels).

\section*{N2270A 10-Channel High Voltage MUX Module}

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 10 & \\
\hline Maximum Switching Voltage: & Terminal-Terminal or Terminal-Chassis: & 1000 V peak (per IEC1010 for Pollution Degree I) \\
\hline Maximum Switching Current: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & \[
\begin{aligned}
& 1 \mathrm{~A} \\
& 1 \mathrm{~A}
\end{aligned}
\] \\
\hline Maximum Switching Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & \[
\begin{aligned}
& 10 \mathrm{~W} \\
& 10 \mathrm{~W}
\end{aligned}
\] \\
\hline Thermal Offset: & Per Channel: & \(200 \mu \mathrm{~V}\) \\
\hline Initial Closed Channel Resistance: & < \(1 \Omega\) & \\
\hline Relay Life: & Signal load, 1V 10mA: & \(10^{8}\) \\
\hline Maximum Scan Rate: & 100 Chans/sec & \\
\hline
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \begin{array}{l}\text { Open Channel, } \\
\text { Channel-Channel: } \\
\text { (with } 1 \text { channel closed) }\end{array} & <\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right): & >10^{10} \Omega \\
<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right): & >10^{9} \Omega\end{array}\right]\)\begin{tabular}{ll}
\hline Channel-Chassis: & \(<\left(40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}\right):\) \\
\hline (with 1 channel closed) & \(<\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right):\)
\end{tabular}

Chapter 9 Specifications
N2270A 10-Channel High Voltage MUX Module

\section*{AC CHARACTERISTICS \({ }^{\text {a }}\)}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel, \\
Hi-Lo: \\
Channel-Chassis:
\end{tabular} & \(<7 \mathrm{pF}\) \\
\hline \begin{tabular}{l}
Insertion Loss: \\
(with \(50 \Omega\) termination)
\end{tabular} & \(100 \mathrm{kHz}:\) & 0.1 dB \\
\(1 \mathrm{MHz}:\) & 0.2 dB \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \(100 \mathrm{kHz}:\) & -70 dB \\
\(1 \mathrm{MHz}:\) & -50 dB \\
\hline
\end{tabular}

Environmental Conditions
\begin{tabular}{l|l}
\hline Operating Pollution Degree: & 2 \\
\hline Operating Altitude: & 3000 meters (10,000 ft) \\
\hline Measurement Category: & \(\mathrm{I}, 1500 \mathrm{Vpk}\) transient, 500 V over voltage transient \\
\hline Operating Temperature: & \(0-55^{\circ} \mathrm{C}\) \\
\hline Operating Humidity: & \(<80 \% \mathrm{RH}\left(0^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\right)\), non-condensing \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with LoTerminal of the input connected to LoTerminal of the output (either directly or via the 3499A/B/C switching channels).

N2272A 1 GHz RF 1-to-9 MUX Module

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{l|l}
\hline Total Channels: & 1-to-9 \\
\hline Relay Type: & Latching \\
\hline Connector Type: & BNC \\
\hline Maximum Switching Voltage: & 24 VDC \\
\hline Maximum Switching Current: & 1 A \\
\hline Maximum Switching Power: & 24 W \\
\hline Characteristic Impedance: & \(50 \Omega\) \\
\hline Relay Life: & \begin{tabular}{l}
Mechanical: \\
Electrical@1A24VDC:
\end{tabular} \\
\hline
\end{tabular}

DC CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Offset Voltage (mV): & \multicolumn{2}{|l|}{8.0} \\
\hline Initial Closed Channel Resistance (\(\Omega\)): & \multicolumn{2}{|l|}{0.8} \\
\hline Insulation Resistance (\(\Omega\)): & \begin{tabular}{l}
@(\(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\)) \\
(Open Ch, Ch-Ch): \\
(Ch-Chassis, Ch-Center): \\
@ \(\left(40^{\circ} \mathrm{C}, 80 \% \mathrm{RH}\right)\) \\
(Open Ch, Ch-Ch): \\
(Ch-Chassis, Ch-Center):
\end{tabular} & \[
\begin{aligned}
& 1010 \\
& 10^{10} \\
& 10^{9} \\
& 10^{9}
\end{aligned}
\] \\
\hline
\end{tabular}

Chapter 9 Specifications
N2272A 1 GHz RF 1-to-9 MUX Module

■ AC CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Bandwidth (-3dB): & 1 GHz & \\
\hline Insertion Loss (dB): @(\(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\)) & \begin{tabular}{l}
100 MHz : \\
300 MHz : \\
500 MHz \\
800 MHz : \\
1 GHz :
\end{tabular} & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 1.0 \\
& 1.8 \\
& 2.5
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Ch-Ch Cross Talk (dB): \\
@(\(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\))
\end{tabular} & \begin{tabular}{l}
100 MHz : \\
300 MHz : \\
500 MHz \\
800 MHz \\
1 GHz :
\end{tabular} & \[
\begin{aligned}
& -75 \\
& -65 \\
& -65 \\
& -55 \\
& -50
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VSWR: \\
@(\(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\))
\end{tabular} & \begin{tabular}{l}
100 MHz \\
300 MHz : \\
500 MHz \\
800 MHz \\
1 GHz :
\end{tabular} & \[
\begin{aligned}
& 1.20 \\
& 1.30 \\
& 1.35 \\
& 1.35 \\
& 1.55
\end{aligned}
\] \\
\hline Capacitance (pF): & Center-Shield: Center-Center: & \[
\begin{aligned}
& 60 \mathrm{pF} \\
& 0.006 \mathrm{pF}
\end{aligned}
\] \\
\hline Rise Time: & 500 ps & \\
\hline Signal Delay: & 2.5 ns & \\
\hline
\end{tabular}

N2276A Dual 1-to-6(4) Microwave MUX/ Attenuator Module
\begin{tabular}{|c|c|}
\hline Total Channels: & Dual 1-to-6 (Dual 1-to-4 when with option 204) \\
\hline Connector Type: & SMA (female) \\
\hline Frequency Range: & DC to 20 GHz \\
\hline Insertion Loss: & \(0.3 \mathrm{~dB}+0.015^{*}\) Frequency (GHz) \\
\hline Isolation: & 100 dB min. DC to 12 GHz 80 dB min. 12 GHz to 15 GHz 70 dB min. 15 GHz to 20 GHz \\
\hline SWR: & \begin{tabular}{l}
1.2 max DC to 4 GHz \\
1.35 max 4 to 12.4 GHz \\
1.45 max 12.4 to 18 GHz \\
1.7 max 18 to 20 GHz
\end{tabular} \\
\hline \begin{tabular}{l}
Repeatability: \\
(5 million cycles at \(25^{\circ} \mathrm{C}\))
\end{tabular} & 0.03 dB maximum \\
\hline Switch Speed: & 25 ms \\
\hline Switch Life: & 5 million cycles \\
\hline
\end{tabular}

\section*{N 2276B M icrowave M U X/Attenuator M odule}

The switching and attenuation characteristics of the N2276B are determined by the switches and attenuators installed in it. Please refer to the switch's and/or attenuator's data sheet for the specifications of your customized N2276B module.

Chapter 9 Specifications

\section*{N2280A Quadruple 1-to-2 Optical Switch Module}

N2280A Quadruple 1-to-2 Optical Switch Module
\begin{tabular}{|c|c|c|c|}
\hline & & Typical & Maximum \\
\hline Insertion Loss: & Single-mode (SM) \({ }^{\text {a }}\) & 0.5 dB & 0.8 dB \\
\hline Return Loss: & SM: \({ }^{\text {b }}\) & 50 dB & 45 dB (min.) \\
\hline Polarization Dependent Loss: \({ }^{\text {b }}\) & SM: & 0.02 dB & 0.07 dB \\
\hline Insertion Loss Stability: \({ }^{\text {c }}\) & & \(\pm 0.03 \mathrm{~dB}\) & \(\pm 0.05 \mathrm{~dB}\) \\
\hline Repeatability: & & \(\pm 0.03 \mathrm{~dB}\) & \(\pm 0.005 \mathrm{~dB}\) \\
\hline Crosstalk: & & -70 dB & \(-60 \mathrm{~dB}\) \\
\hline Optical Input Power: & & & 300 mW \\
\hline Switching Time: & & 15 ms & 20 ms \\
\hline Cycle Rate: & & & \(5 \mathrm{c} / \mathrm{s}\) \\
\hline Relay Life: & & & 10M cycles (min.) \\
\hline Operating Temperature: & & & 0 to \(55^{\circ} \mathrm{C}\) \\
\hline Storage Temperature; & & & -40 to \(70^{\circ} \mathrm{C}\) \\
\hline Humidity: (non-condensing) & & & < \(80 \%\) RH \\
\hline Power: & & \(5 \pm 5 \% \mathrm{VDC} / 45 \mathrm{~mA}\) & \(5 \pm 5 \% \mathrm{VDC} / 70 \mathrm{~mA}\) \\
\hline
\end{tabular}
a. Excluding connectors. Include 0.2 dB (typical insertion loss) for each connector.
b. Excluding connectors.
c. Drift of any channel relative to one assigned reference channel at \(\pm 3^{\circ} \mathrm{C}\) deviation of ambient temperature over a seven-day period.

N2281A Dual 1-to-4 Optical Switch Module
\begin{tabular}{|c|c|c|c|}
\hline & & Typical & Maximum \\
\hline Insertion Loss: & Single-mode (SM) : \({ }^{\text {a }}\) & 0.5 dB & 0.8 dB \\
\hline Return Loss: & SM: \({ }^{\text {b }}\) & 50 dB & 45 dB (min.) \\
\hline Polarization Dependent Loss: \({ }^{\text {b }}\) & SM: & 0.02 dB & 0.07 dB \\
\hline Insertion Loss Stability: \({ }^{\text {c }}\) & & \(\pm 0.03 \mathrm{~dB}\) & \(\pm 0.05 \mathrm{~dB}\) \\
\hline Repeatability: & & \(\pm 0.03 \mathrm{~dB}\) & \(\pm 0.005 \mathrm{~dB}\) \\
\hline Crosstalk: & & -70 dB & -60 dB \\
\hline Optical Input Power: & & & 300 mW \\
\hline Switching Time: & & 20 ms & 25 ms \\
\hline Cycle Rate: & & & \(5 \mathrm{c} / \mathrm{s}\) \\
\hline Relay Life: & & & 10M cycles (min.) \\
\hline Operating Temperature: & & & 0 to \(55^{\circ} \mathrm{C}\) \\
\hline Storage Temperature: & & & -40 to \(70^{\circ} \mathrm{C}\) \\
\hline Humidity (non-condensing): & & & < \(80 \% \mathrm{RH}\) \\
\hline Power: & & \(5 \pm 5 \% \mathrm{VDC} / 45 \mathrm{~mA}\) & \(5 \pm 5 \% \mathrm{VDC} / 70 \mathrm{~mA}\) \\
\hline
\end{tabular}
a. Excluding connectors. Include 0.2 dB (typical insertion loss) for each connector.
b. Excluding connectors.
c. Drift of any channel relative to one assigned reference channel at \(\pm \mathcal{O}^{\circ} \mathrm{C}\) deviation of ambient temperature over a seven-day period.

Chapter 9 Specifications
N2282A 1-to-8 Optical Switch Module

N2282A 1-to-8 Optical Switch Module
\begin{tabular}{|c|c|c|c|}
\hline & Minimum & Typical & Maximum \\
\hline Channel Count: & & 1-to-8 & \\
\hline Switch Type: & & Latching & \\
\hline Return Loss (SM): \({ }^{\text {a }}\) & & -62 dB & \(-57 \mathrm{~dB}\) \\
\hline Insertion Loss (SM): \({ }^{\text {b }}\) & & 0.5 dB & 0.7 dB \\
\hline Insertion Loss Stability: \({ }^{\text {c }}\) & & \(\pm 0.02 \mathrm{~dB}\) & \(\pm 0.025 \mathrm{~dB}\) \\
\hline Polarization Dependent Loss (PDL): & & 0.02 dB & 0.04 dB \\
\hline Insertion Repeatability \({ }^{\text {d }}\) Sequential Switching: Random Switching: & & \[
\begin{aligned}
& \pm 0.005 \mathrm{~dB} \\
& \pm 0.01 \mathrm{~dB}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.01 \mathrm{~dB} \\
& \pm 0.05 \mathrm{~dB}
\end{aligned}
\] \\
\hline Crosstalk: & & \(-90 \mathrm{~dB}\) & \(-80 \mathrm{~dB}\) \\
\hline Input Power (Optical): & & 300 mW Continuous & \\
\hline Switching Time: & & 250 ms & \\
\hline Wavelength (SM): & 1270 nm & & 1670 nm \\
\hline Relay Life: & 10M cycles & & \\
\hline Operating Temperature: & \(0^{\circ} \mathrm{C}\) & & \(55^{\circ} \mathrm{C}\) \\
\hline Humidity (non-condensing): & & \[
\begin{aligned}
& <80 \% \text { RH } \\
& \left(0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \\
\hline
\end{tabular}
a. Excluding connector.
b. Excluding Connectors, 0.2 dB typical connector insertion loss.
c. Measured after one hour's warm-up.
d. Measured after temperature has been stablized for one hour.

\section*{44470A 10-Channel MUX M odule}

■ INPUT CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 10 & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 V , dc or ac rms \\
\hline Maximum Current: & Per Channel or Module: & 2 A , dc or ac rms \\
\hline Maximum Power: & Per Channel or Module: & \(60 \mathrm{~W} \mathrm{dc} ; 500 \mathrm{VA} \mathrm{ac}\) \\
\hline Maximum Overvoltage Transients: & \(1400 \mathrm{~V}_{\mathrm{pk}}\) & \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential or single-ended & \\
\hline Initial Closed Channel Resistance: & \(<1 \Omega\) & \\
\hline Relay Life: & Dry Load of \(<300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{43 Chans/sec} \\
\hline \multicolumn{3}{|l|}{\(\square\) DC ISOLATION} \\
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \[
\begin{aligned}
& <\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right): \\
& <\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):
\end{aligned}
\] & \[
\begin{aligned}
& >10^{11} \Omega \\
& >10^{9} \Omega
\end{aligned}
\] \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \[
\begin{aligned}
& <\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right): \\
& <\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):
\end{aligned}
\] & \[
\begin{aligned}
& >10^{10} \Omega \\
& >10^{8} \Omega
\end{aligned}
\] \\
\hline Channel-Chassis: (with 1 channel closed) & \[
\begin{aligned}
& <\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right): \\
& <\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):
\end{aligned}
\] & \[
\begin{aligned}
& >10^{10} \Omega \\
& >5 \times 10^{8} \Omega
\end{aligned}
\] \\
\hline
\end{tabular}
a. Using the 44474A external increment \& channel closed, display off.

\section*{Chapter 9 Specifications}

44470A 10-Channel MUX Module

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: HI-LO: \\
Channel-Chassis:
\end{tabular} & \[
\begin{aligned}
& <5 \mathrm{pF} \\
& <27 \mathrm{pF} \\
& <80 \mathrm{pF}
\end{aligned}
\] \\
\hline Insertion Loss: (with \(50 \Omega\) termination) & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <0.20 \mathrm{~dB} \\
& <0.25 \mathrm{~dB} \\
& <0.50 \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <-73 \mathrm{~dB} \\
& <-53 \mathrm{~dB} \\
& <-33 \mathrm{~dB}
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

Chapter 9 Specifications

\section*{44470D 20-Channel MUX M odule}

■INPUT CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Total Channels: & \multicolumn{2}{|l|}{20} \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 V , dc or ac rms \\
\hline Maximum Current: & Per Channel or Module: & \(2 \mathrm{~A}, \mathrm{dc}\) or ac rms \\
\hline Maximum Power: & Per Channel or Module: & \(60 \mathrm{~W} \mathrm{dc} ; 125 \mathrm{VA} \mathrm{ac}\) \\
\hline Maximum Overvoltage Transients: & \multicolumn{2}{|l|}{\(1400 \mathrm{~V}_{\mathrm{pk}}\)} \\
\hline Thermal Offset: & \multicolumn{2}{|l|}{\(<3 \mu \mathrm{~V}\) differential or single-ended} \\
\hline Initial Closed Channel Resistance: & \multicolumn{2}{|l|}{\(<1 \Omega\)} \\
\hline Relay Life: & Dry Load of < \(300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{43 Chans/sec} \\
\hline \(\square\) DC ISOLATION & & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, Channel- \\
Channe: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{11} \Omega\) \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \begin{tabular}{l}
\(>5 \times 10^{9} \Omega\) \\
\hline 10
\end{tabular} \\
\hline \begin{tabular}{l}
Channel-Chassis; \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) & \(>\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular}
a. Using the 44474A external increment \& channel closed, display off.

Chapter 9 Specifications
44470D 20-Channel MUX Module

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: HI-LO: \\
Channel-Chassis:
\end{tabular} & \[
\begin{aligned}
& <7 \mathrm{pF} \\
& <27 \mathrm{pF} \\
& <80 \mathrm{pF}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Insertion Loss: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <0.20 \mathrm{~dB} \\
& <0.25 \mathrm{~dB} \\
& <1.20 \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <-73 \mathrm{~dB} \\
& <-53 \mathrm{~dB} \\
& <-31 \mathrm{~dB}
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

\section*{44471A 10-Channel GP Relay M odule}

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & & 10 \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 V , dc or ac rms \\
\hline Maximum Current: & Per Channel: Per Module: & 2 A , dc or ac rms 20 A , dc or ac rms \\
\hline Maximum Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 60 W dc; 500 VA ac 600 W dc; 5000 VA ac \\
\hline Maximum Overvoltage Transients: & \(1400 \mathrm{~V}_{\mathrm{pk}}\) & \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential or single-ended & \\
\hline Initial Closed Channel Resistance: & < \(1 \Omega\) & \\
\hline Relay Life: & Dry Load of \(<300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & 43 Chans/sec & \\
\hline \multicolumn{3}{|l|}{\(\square\) DC ISOLATION} \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, Channel- \\
\begin{tabular}{l}
Channel: \\
(with 1 channel closed)
\end{tabular}
\end{tabular} \begin{tabular}{lll}
\(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) & \(>10^{11} \Omega\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{9} \Omega\) \\
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) & \(>5 \times 10^{11} \Omega\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\) & \(>10^{10} \Omega\) \\
\hline
\end{tabular}
a. Using the 44474 A external increment \& channel closed, display off.

Chapter 9 Specifications
44471A 10-Channel GP Relay Module

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{l|ll}
\hline Capacitance: & \begin{tabular}{l}
Open Channel: \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \(<7 \mathrm{pF}\) \\
& Channel-Chassis: & \(<10 \mathrm{pF}\) \\
\hline \multirow{2}{*}{ Insertion Loss: } & \(100 \mathrm{kHz}:\) & \(<25 \mathrm{pF}\) \\
(with 50 termination) & \(1 \mathrm{MHz}:\) & \(<0.20 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<0.50 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Crosstalk: } & \(100 \mathrm{kHz}:\) & \(<-73 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-53 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<-33 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

\section*{44471D 20-Channel GP Relay M odule}

\section*{INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & \multicolumn{2}{|l|}{20} \\
\hline Maximum Voltage:; & Terminal-Terminal or Terminal-Chassis: & 250 V , dc or ac rms \\
\hline Maximum Current: & Per Channel: Per Module: & 1 A , dc or ac rms 20 A , dc or ac rms \\
\hline Maximum Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 60 W dc; 125 VA ac 1200 W dc; 2500 VA ac \\
\hline Maximum Overvoltage Transients: & \(1400 \mathrm{~V}_{\mathrm{pk}}\) & \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential or single-ended & \\
\hline Initial Closed Channel Resistance: & \(<1 \Omega\) & \\
\hline Relay Life: & Dry Load of \(<300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & 43 Chans/sec & \\
\hline
\end{tabular}
\(\left.\begin{array}{l|ll}\hline \begin{array}{l}\text { Open Channel, } \\
\text { Channel-Channel: } \\
\text { (with } 1 \text { channel closed) }\end{array} & \begin{array}{l}<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right): \\
<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\end{array} & >10^{11} \Omega \\
\hline 10^{9} \Omega\end{array}\right]\)\begin{tabular}{ll}
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\hline
\end{tabular}
a. Using the 44474 A external increment \& channel closed, display off.

Chapter 9 Specifications
44471D 20-Channel GP Relay Module

\section*{AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{l|ll}
\hline Capacitance: & \begin{tabular}{l}
Open Channel: \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \(<7 \mathrm{pF}\) \\
& Channel-Chassis: & \(<10 \mathrm{pF}\) \\
Insertion Loss: & \(100 \mathrm{kHz}:\) & \(<25 \mathrm{pF}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<0.20 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<1 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Crosstalk: } & \(100 \mathrm{kHz}:\) & \(<-71 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<-51 \mathrm{~dB}\) \\
& 10 MHz & \(<-31 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

\section*{44472A Dual 4-Channel VHF Switch M odule}
- INPUT CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Total Channels: & Dual 4 Chans & \\
\hline Connector Type: & BNC & \\
\hline Maximum Voltage: & \begin{tabular}{l}
Center-Center or Center-Low: \\
Low-Chassis or Low-Low:
\end{tabular} & \begin{tabular}{l}
\(250 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V}\) ac rms or \\
42 V ac peak \\
42 V dc
\end{tabular} \\
\hline Maximum Current: & Per Channel: & \(30 \mathrm{~mA} \mathrm{dc}, 300 \mathrm{~mA} \mathrm{ac} \mathrm{rms}\) \\
\hline Thermal Offset: & Per Channel: & \(<15 \mu \mathrm{~V}\) \\
\hline Characteristic Impedance: & \multicolumn{2}{|l|}{\(50 \Omega\)} \\
\hline Initial Closed Channel Resistance: & \multicolumn{2}{|l|}{\(<1 \Omega\)} \\
\hline Relay Life: & Dry Load of \(<300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{43 Chans/sec} \\
\hline \multicolumn{3}{|l|}{■ DC ISOLATION} \\
\hline Between Any Two Points: & \(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right)\) : & \(>10^{7} \Omega\) \\
\hline
\end{tabular}
a. Using Agilent 44474A external increment \& channel closed, display off.

Chapter 9 Specifications
44472A Dual 4-Channel VHF Switch Module

■ AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)
\begin{tabular}{l|ll}
\hline Capacitance: & \begin{tabular}{l}
Center-Center, Center- \\
Common: \\
Center-Low: \\
Low-Chassis:
\end{tabular} & \(<0.002 \mathrm{pF}\) \\
& \(<0.7 \mathrm{~ns}\) & \(<70 \mathrm{pF}\) \\
Rise Time: & \(<0.20 \mu \mathrm{FF}\)
\end{tabular}
a. When all channels in a group are opened, the last channel opened (or channel 00 or 13 following a group RESET) has channel-common isolation of \(>80 \mathrm{~dB} @ 30 \mathrm{MHz},>60 \mathrm{~dB} @ 100 \mathrm{MHz}\), and \(>40 \mathrm{~dB} @ 300 \mathrm{MHz}\).

\section*{44473A \(4 \times 4\) 2-Wire Matrix Switch M odule}

■ INPUT CHARACTERISTICS
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 16 & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 V , dc or ac rms \\
\hline Maximum Current: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & \begin{tabular}{l}
\(2 \mathrm{~A}, \mathrm{dc}\) or ac rms \\
8 A , dc or ac rms
\end{tabular} \\
\hline Maximum Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 60 W dc; 500 VA ac 240 W dc; 2000 VA ac \\
\hline Maximum Overvoltage Transients: & \(1400 \mathrm{~V}_{\mathrm{pk}}\) & \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) differential & \\
\hline Initial Closed Channel Resistance: & \(<1 \Omega\) & \\
\hline Relay Life: & Dry Load of < \(300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{43 Chans/sec} \\
\hline ■ DC ISOLATION & & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \begin{tabular}{l}
\(>10^{11} \Omega\) \\
\(>10^{9} \Omega\)
\end{tabular} \\
\hline \begin{tabular}{l}
HI-LO: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\(<\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{10} \Omega\) \\
\hline \begin{tabular}{lll}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(<\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) & \(>10^{8} \Omega\)
\end{tabular}

\footnotetext{
a. Using the 44474A external increment \& channel closed, display off.
}

Chapter 9 Specifications
44473A \(4 \times 4\) 2-Wire Matrix Switch Module

\section*{- AC ISOLATION / PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: HI-LO: \\
Channel-Chassis:
\end{tabular} & \[
\begin{aligned}
& <5 \mathrm{pF} \\
& <40 \mathrm{pF} \\
& <70 \mathrm{pF}
\end{aligned}
\] \\
\hline Insertion Loss: (with \(50 \Omega\) termination) & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& <0.30 \mathrm{~dB} \\
& <0.35 \mathrm{~dB} \\
& <0.90 \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Crosstalk: \\
(with \(50 \Omega\) termination)
\end{tabular} & \[
\begin{aligned}
& 100 \mathrm{kHz}: \\
& 1 \mathrm{MHz}: \\
& 10 \mathrm{MHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <-76 \mathrm{~dB} \\
& <-56 \mathrm{~dB} \\
& <-36 \mathrm{~dB}
\end{aligned}
\] \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

\section*{44474A 16-Bit Digital I/O M odule}

\section*{■ I/O LINES}
\begin{tabular}{l|ll}
\hline Number of Bits: & 16 & \\
\hline Maximum Voltage: & Line-Chassis: & +30 V dc \\
\hline & Vout (high): & \begin{tabular}{l}
\(\geq 2.4 \mathrm{~V} @ \mathrm{I} \leq 8 \mathrm{~mA}\) output \\
Vout (low): \\
Output Characteristics:
\end{tabular} \\
& (low): & \begin{tabular}{l}
\(\leq 0.4 \mathrm{~V} \mathrm{@} \mathrm{I} \mathrm{\leq 16} \mathrm{~mA} \mathrm{input}\) \\
\\
fused at 250 mA
\end{tabular} \\
\hline Input Characteristics: & \begin{tabular}{ll}
Vin (high): \\
Vin (low):
\end{tabular} & \begin{tabular}{ll}
\(\geq 2.0 \mathrm{~V}\) \\
\(\leq 0.8 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}

HANDSHAKE LINES
\begin{tabular}{l|ll}
\hline Maximum Voltage: & Line-Chassis: & +5 V dc \\
\hline \multirow{2}{*}{ Output Characteristics: } & \begin{tabular}{l}
Vout (high): \\
\\
\\
Vout (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.4 \mathrm{~V} @ \mathrm{I} \leq 400 \mu \mathrm{~A}\) output \\
\(\leq 0.5 \mathrm{~V} @ \mathrm{I} \leq 2 \mathrm{~mA}\) input
\end{tabular} \\
\hline \multirow{2}{*}{ Input Characteristics: } & \begin{tabular}{l}
Vin (high): \\
Vin (low):
\end{tabular} & \begin{tabular}{l}
\(\geq 2.0 \mathrm{~V}\) \\
\(\leq 0.8 \mathrm{~V}\)
\end{tabular} \\
\hline External Increment (EI):a & Minimum TTL Pulse Width: & \(0.25 \mu \mathrm{~s}\) \\
\hline Channel Closed (CC): & Minimum TTL Pulse Width: & \(10 \mu \mathrm{~s}\) \\
\hline
\end{tabular}
a. Both El and CC lines are used for external controlled scanning. The \(3499 \mathrm{~A} / \mathrm{B} / \mathrm{C}\) will advance to the next channel in the scan list on the falling edge of El pulse.
b. When the next channel closes, the 44474A outputs a CC pulse to trigger the voltmeter.

Chapter 9 Specifications
44475A Breadboard Module

\section*{44475A Breadboard Module}

Components required, but not supplied, are to be mounted on the Breadboard. Refer to the manufacturers data sheet for load/drive specifications of these components see page 251 for a list of required components).

\section*{■ MODULE DIMENSIONS}
\begin{tabular}{l|l}
\hline Component Area Available: & \begin{tabular}{l}
\(104 \mathrm{~mm} \times 74 \mathrm{~mm}\) and \(79 \mathrm{~mm} \times 74 \mathrm{~mm}\) \\
\(\left(4.1^{\prime \prime} \times 2.9^{\prime \prime}\right.\) and \(\left.3.1^{\prime \prime} \times 2.9^{\prime \prime}\right)\)
\end{tabular} \\
\hline Grid Hole Spacing (center-center): & \(2.54 \mathrm{~mm} \times 2.54 \mathrm{~mm}\left(0.1^{\prime \prime} \times 0.1^{\prime \prime}\right)\) \\
\hline Grid Hole Size (inside diameter): & \(1.17 \mathrm{~mm}\left(0.046^{\prime \prime}\right)\) \\
\hline Maximum Component Height (above board): & \(12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)\) \\
\hline Maximum lead Length (below board): & \(3.2 \mathrm{~mm}\left(0.125^{\prime \prime}\right)\) \\
\hline\(\square\) INPUT CHARACTERISTICS & \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline & \(42 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V} \mathrm{ac} \mathrm{rms}\),42 V ac peak \\
Maximum Voltage: & \begin{tabular}{l}
(on breadboard area); \\
5.5 V (on digital input port lines)
\end{tabular} \\
\hline Maximum Power Dissipation (Per Module): & 2 Watts \\
\hline
\end{tabular}

Chapter 9 Specifications

Chapter 9 Specifications
44476A Microwave Switch Module

\section*{44476A Microwave Switch M odule}

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{l|l}
\hline Frequency Range: & DC to 18 GHz \\
\hline Characteristic Impedance: & \(50 \Omega\) \\
\hline Input Power Rating: & 1 Watt average, 100 Watts peak (Also less than \(\pm 7 \mathrm{~V} \mathrm{dc}\)) \\
\hline Average Switch Life: & \(10^{6}\) \\
\hline Repeatability (typical): & 0.03 dB after \(10^{6}\) switchings \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & 43 Chans/sec \\
\hline Connector: & SMA \\
\hline
\end{tabular}

AC ISOLATION / PERFORMANCE
\begin{tabular}{l|ll}
\hline Isolation: & DC \(-18 \mathrm{GHz}:\) & \(>90 \mathrm{~dB}\) \\
\hline \multirow{2}{*}{ Insertion Loss: } & DC \(-2 \mathrm{GHz}:\) & \(<0.25 \mathrm{~dB}\) \\
& DC \(-18 \mathrm{GHz}:\) & \(<0.50 \mathrm{~dB}\) \\
\hline \multirow{3}{*}{ SWR (3 mm SMA): } & DC \(-2 \mathrm{GHz}:\) & \(<1.15 \mathrm{~dB}\) \\
& DC \(-12.4 \mathrm{GHz}:\) & \(<1.25 \mathrm{~dB}\) \\
& DC \(-18.0 \mathrm{GHz}:\) & \(<1.40 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. Using the 44474A External Increment \& Channel Closed, display off.

\section*{44476B Microwave Switch M odule}

The switching and attenuation characteristics of the 44476B are determined by the switches and attenuators installed in it. Please refer to the switch's and/or attenuator's data sheet for the specifications of your customized 44476B module.

\section*{44477A F orm-C Relay Module}

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & 7 & \\
\hline Maximum Voltage: & Terminal-Terminal or Terminal-Chassis: & 250 V dc or ac rms, 350 V ac peak \\
\hline Maximum Current: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 2 A , dc or ac rms 14 A , dc or ac rms \\
\hline Maximum Power: & \begin{tabular}{l}
Per Channel: \\
Per Module:
\end{tabular} & 60 W dc; 500 VA ac 420 W dc; 3500 VA ac \\
\hline Maximum Overvoltage Transients: & \(1400 \mathrm{~V}_{\mathrm{pk}}\) & \\
\hline Thermal Offset: & \(<3 \mu \mathrm{~V}\) per channel & \\
\hline Initial Closed Channel Resistance: & < \(1 \Omega\) & \\
\hline Relay Life: & Dry Load of \(<300 \mathrm{~mA} \&<10 \mathrm{~V}\) : Maximum Rated Load: & \[
\begin{aligned}
& 10^{8} \\
& 10^{5}
\end{aligned}
\] \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & 43 Chans/sec & \\
\hline
\end{tabular}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Open Channel, \\
Channel-Channel: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
\(\leq\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) \\
\(\leq\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right):\)
\end{tabular} & \(>10^{11} \Omega\) \\
\hline & & \(>10^{9} \Omega\) \\
\hline \begin{tabular}{l}
Channel-Chassis: \\
(with 1 channel closed)
\end{tabular} & \(\leq\left(40^{\circ} \mathrm{C}, 60 \% \mathrm{RH}\right):\) & \(>5 \times 10^{11} \Omega\) \\
\hline
\end{tabular}
a. Using the 44474 A external increment \& channel closed, display off.

Chapter 9 Specifications
44477A Form-C Relay Module

\section*{AC ISOLATION/PERFORMANCE \({ }^{\text {a }}\)}
\begin{tabular}{l|ll}
\hline \begin{tabular}{l}
Capacitance: \\
(with 1 channel closed)
\end{tabular} & \begin{tabular}{l}
Open Channel, Channel-Channel: \\
Channel-Chassis:
\end{tabular} & \begin{tabular}{l}
\(<10 \mathrm{pF}\) \\
\(<25 \mathrm{pF}\)
\end{tabular} \\
\hline Insertion Loss: & \(100 \mathrm{kHz}:\) & \(<0.20 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(1 \mathrm{MHz}:\) & \(<0.25 \mathrm{~dB}\) \\
& \(10 \mathrm{MHz}:\) & \(<0.50 \mathrm{~dB}\) \\
\hline & \(100 \mathrm{kHz}:\) & \(<-73 \mathrm{~dB}\) \\
Crosstalk: & \(1 \mathrm{MHz}:\) & \(<-53 \mathrm{~dB}\) \\
(with \(50 \Omega\) termination) & \(10 \mathrm{MHz}:\) & \(<-33 \mathrm{~dB}\) \\
\hline
\end{tabular}
a. With chassis of all instruments connected, and with the Lo of input lines connected to the Lo of output lines (either directly or via the 3499A/B/C switching channels).

\section*{44478A/B 1.3 GHz Dual 4-to-1 M U X M odules}

Specifications in the table describe the modules' warranted performance over the temperature range 0 ㅇto \(55^{\circ} \mathrm{C}\). Information marked by the "Typical" designation is helpful in applying the modules, but is nonwarranted information.

\section*{■ INPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|}
\hline Total Channels: & Dual 4 Chans & \\
\hline Maximum Voltage: & Any Center/Shield to Any Other Center/Shield/ Chassis: & \(42 \mathrm{~V} \mathrm{dc} \mathrm{+} \mathrm{ac} \mathrm{peak}\) \\
\hline Maximum Current: & Per Channel or Common: & 1 Adc , or ac rms \\
\hline Maximum Power: & Per Channel or Common: Each Resistive Termination: & \(24 \mathrm{~W}, 24\) VA or 44 dBm \(0.25 \mathrm{~W}, 0.25 \mathrm{VA}\) or 24 dBm \\
\hline Characteristic Impedance: & \[
\begin{aligned}
& \text { 44478A: } \\
& \text { 44478B: }
\end{aligned}
\] & \[
\begin{aligned}
& 50 \Omega \\
& 75 \Omega
\end{aligned}
\] \\
\hline Relay Life (Typica): & With No Load: At Maximum Rated Power: & \(5 \times 10^{6}\) operations \(10^{5}\) operations \\
\hline Maximum Scan Rate: \({ }^{\text {a }}\) & \multicolumn{2}{|l|}{43 Chans/sec} \\
\hline \multicolumn{3}{|l|}{■ DC PERFORMANCE} \\
\hline Thermal Offset: & Per Channel: & \(<6 \mu \mathrm{~V}\) (\(<2 \mu \mathrm{~V}\), Typical \\
\hline Initial Closed Channel Resistance: & \multicolumn{2}{|l|}{\(<1 \Omega\)} \\
\hline Insulation Resistance (any terminal to any terminal) & \[
\begin{aligned}
& \leq\left(40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\right): \\
& \leq\left(25^{\circ} \mathrm{C}, 40 \% \mathrm{RH}\right):
\end{aligned}
\] & \[
\begin{aligned}
& >10^{8} \Omega \\
& >10^{10} \Omega \text { (Typical) }
\end{aligned}
\] \\
\hline
\end{tabular}
a. Using the 44474A external increment \& channel closed, display off.

Chapter 9 Specifications
44478A/B 1.3 GHz Dual 4-to-1 MUX Modules

AC ISOLATION / PERFORMANCE \(\left(Z_{L}=Z_{S}=50 \Omega \text { or } 75 \Omega\right)^{\text {a }}\)

\section*{Insertion Loss}
\begin{tabular}{|c|c|c|}
\hline \(\leq 40^{\circ} \mathrm{C}, 95 \% \mathrm{RH}\) : & \[
\begin{aligned}
& \leq 10 \mathrm{MHz}: \\
& \leq 100 \mathrm{MHz}: \\
& \leq 500 \mathrm{MHz}: \\
& \leq 1.3 \mathrm{GHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <0.3 \mathrm{~dB} \\
& <0.7 \mathrm{~dB} \\
& <1.5 \mathrm{~dB} \\
& <3.0 \mathrm{~dB}
\end{aligned}
\] \\
\hline \(\leq 25^{\circ} \mathrm{C}, \mathbf{4 0 \%} \mathrm{RH}\) (Typical): & \[
\begin{aligned}
& \leq 10 \mathrm{MHz} \\
& \leq 100 \mathrm{MHz}: \\
& \leq 500 \mathrm{MHz}: \\
& \leq 1.3 \mathrm{GHz}
\end{aligned}
\] & \[
\begin{aligned}
& <0.2 \mathrm{~dB} \\
& <0.5 \mathrm{~dB} \\
& <1.1 \mathrm{~dB} \\
& <1.9 \mathrm{~dB}
\end{aligned}
\] \\
\hline Crosstalk \({ }^{\text {b }}\) & & \\
\hline Channel-Channel, ChannelCommon: (with 1 channel closed) & \[
\begin{aligned}
& \leq 10 \mathrm{MHz}: \\
& \leq 100 \mathrm{MHz}: \\
& \leq 500 \mathrm{MHz}: \\
& \leq 1.3 \mathrm{GHz}
\end{aligned}
\] & \[
\begin{aligned}
& <-90 \mathrm{~dB} \\
& <-80 \mathrm{~dB} \\
& <-65 \mathrm{~dB} \\
& <-55 \mathrm{~dB}
\end{aligned}
\] \\
\hline Group-Group, Module-Module: & \[
\begin{aligned}
& \leq 10 \mathrm{MHz}: \\
& \leq 100 \mathrm{MHz}: \\
& \leq 500 \mathrm{MHz}: \\
& \leq 1.3 \mathrm{GHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <-90 \mathrm{~dB} \\
& <-80 \mathrm{~dB} \\
& <-70 \mathrm{~dB} \\
& <-60 \mathrm{~dB}
\end{aligned}
\] \\
\hline VSWR: & \[
\begin{aligned}
& \leq 10 \mathrm{MHz}: \\
& \leq 100 \mathrm{MHz}: \\
& \leq 500 \mathrm{MHz}: \\
& \leq 1.3 \mathrm{GHz}:
\end{aligned}
\] & \[
\begin{aligned}
& <1.20 \\
& <1.25 \\
& <1.35 \\
& <1.55
\end{aligned}
\] \\
\hline Capacitance: & Center-Center: Center-Shield: & \[
\begin{aligned}
& <0.006 \mathrm{pF} \\
& <60 \mathrm{pF}
\end{aligned}
\] \\
\hline Rise Time: & < 300 ps & \\
\hline Signal Delay: & \multicolumn{2}{|l|}{\(<3 \mathrm{~ns}\) (channel matched to \(\pm 50 \mathrm{ps}\))} \\
\hline
\end{tabular}
a. \(Z_{L}=Z_{S}=50 \Omega\) applies for the 44478A and \(Z_{L}=Z_{S}=75 \Omega\) applies for the 44478B.
b. The CrossTalk specifications assume \(50 \Omega\) termination for the 44478 A and \(75 \Omega\) termination for the 44478 B . If all channels unterminated, derate specification by 6 dB .

\section*{Index}

If you have questions realated to the operation of the Agilent 3499A/ B/ C or plug-in modules, call 1.800.453.4844 in the United States, or contact your nearest Agilent Technol ogies Sales Office.
*CLS 108, 149, 166
*ESE 151
*ESE? 151
*ESR? 151
*IDN? 59, 153
*OPC 156
*OPC? 156
*RCL 107, 147
*RST 74, 156
*SAV 107, 147
*SRE 152
*SRE? 152
*STB? 152
*TRG 138
*TST? 157
*TST? command 109
1-wire mode 82, 178
2-wire mode 178
3488 M ode Defaults 75 3488A mode selection 112 3499A

F eatures 2
rack mount 23
rear panel 6
3499B
Features 2
rack mount 24
rear panel 6
3499C
F eatures 2
rack mount 26
rear panel 7
44470A module
channel numbering 72
description 230
descriptoin 63
mounting attenuators 231
relay type 63
simplified schematic 230
specifications 329
wiring 232

44470D module
channel numbering 72
connector pinout 235
description 63, 233
pinout 235
relay type 63
simplified schematic 233
wiring 234
44471A module
channel numbering 72
descriptioin 64
description 236
mounting attenuators 237
relay type 64
simplified schematic 236
specifications 333
wiring 238
44471D module
channel numbering 72
descriptiion 65
description 239
relay type 65
simplified schematic 239
specifications 335
wiring 240, 241
44472A module
BNC connector 243
channel numbering 72
description 63, 242
relay type 63
simplified schematic 243
specifications 337, 338
wiring 244
44473A module
channel numbering 73
description 66, 245
relay type 66
simplified schematic 246
specifications 339
wiring 247

44474A module
channel numbering 73
description 67, 248
simplified schematic 249
specifications 341
wiring 250
44475A module
channel numbering 73
description 65, 251
hardware assembly 254
simplified schematic 253
specifications 342
wiring 254
44476A module
channel numbering 73
description 65, 257
relay type 65
specifications 344
44476B module
channel numbering 73
description 65, 260
mounting microwave switches 264
specifications 344
44477A module
channel numbering 73
description 65, 265
relay type 65
simplified schematic 265
specifications 345
44478A module
cabling considerations 271
channel numbering 73
description 63, 267
relay type 63
simplified schematic 269
SMB connector 270
specifications 347
wiring 270

44478B module
cabling considerations 271
channel numbering 73
description 63
relay type 63
SMB connector 270
4448x Screw Terminal Blocks 287
4448X Screw Terminal
Connector Blocks 285
4-wire mode 178
A
ABORt 92, 138
aborting scan 92
address, GPIB (IEEE 488) 47
Addressing
channels 19
Agilent
contacting 8
phone 8
Agilent BASIC 298
Annunciators 5
application program
VB.net 296
Visual BASIC 293
Visual C++291
application programs
Agilent BASIC 298
Visual BASIC 293
ARM
COUNt 134
COUNt? 134
SOURce 134
SOU Rce? 134
TIMer 135
TIMer? 135
arm count selection 91
arm layer 87
arm source description 302
BUS 87
EXT 87
HOLD 87
IMM 87
MIX 87
TIMER 87
arm source selection 91

\section*{B}

Basic Operation 19
built-in digital I/O channel numbering 72
read from 31, 104
specifications 302
write 105
write to 32
built-in external trigger
configuration 42, 93
specifications 302
BYTE 104
C
card pair 41
CC/EI 93
channel
addressing 19
close 21,82
monitoring 80
open 21,82
open all 22
channel list
rules 79, 115
channel number 19
clear scan list 89
close/open relay channel 21,82
command reference
alphabetical 116
functional 122
command separator 161
command syntax
SCPI command
format 161
Common Commands 161
CONFigure
EXTernal TRIGger

OUTPut 137
SOURce 137 SOURce? 137
configure MUX module 83
connecting
with screw terminal block 275

Connector
GPIB 6, 7
mini DIN 7
RS-232 6, 7
Contact Agilent 8
convention
front panel operation 28,78
SCPI command 79, 115
cyde counts of relay 111
D
data display format 96
default states 74
delay time setting 91
DIAGnostic
DISPlay INFOrmation 158
STATe 158
STATe? 158
MONitor 159
MON itor? 159
RELay CYCLes CLEar 155 MAX? 155
CYCLes? 111, 155
SPOKE 131
Digital I/O
configuration 95
default setting 104, 105
general rules 95
operation described 95
read from port 104
read port 31
write port 32
write to port 105
Digital I/O configuration
control line pol arity 96
data display format 96
data line polarity 96
default settings 95
flag line polarity 96
flow control mode 33
front panel 33
I/O line polarity 96

Digital I/O input/output
general rules 139
write to port 32
Digital I/O modules general information 67
DIN Connector 7
Display 5
display message 110
DTR/DSR 48
dual 2-wire mode 178

\section*{E}

EI/CC 93
enable/disable EI/CC 42
enable/disable trigger out pulse 42, 94
error messages 166
errors
execution 167
instrument 170
errors viewing/clearing 36, 108
errors, self-test 172
example program
VB.net 296
Visual BASIC 293
Visual C++291
example programs
Agilent BASIC 298
Visual BASIC 293
execution errors 167
external trigger 93
general rules 93
configuration 94
external trigger (3488A mode)
built-in TRIG IN/TRIG
OUT
specifications 302
configuration 42
EI/CC specifications 341
external trigger (SCPI mode) built-in TRIG IN/TRIG

OUT
specifications 302
configuration 42
EI/CC specifications 341

\section*{F}
factory default 74
Features 2
FIFO 108
Filler Panels 7, 26
firmware
revision 52
revision 4.044
revision differences 106
flow control mode description
(DIO modules)
full handshake mode \#5 102
read and write strobe mode \#4 101
read or write and strobe mode \#3 100
static mode \#1 99
static mode \#2 99
flow control mode description (RS-232)

DTR/DSR 48
None 48
RTS/CTS 48
XON/XOFF 48
FP1 7, 26
FP2 7, 26
Front Panel 4
front-panel display general description 5 on/off 110
text message 110
Front-Panel Operation 28
function mode (N 2260A module)
1-wire mode 178
2-wire mode 178
4-wire mode 178
dual 2-wire mode 178

\section*{G}

GP modules general information 64
GPIB (IEEE 488)
address selection 47
connector 6, 7
interface configuration 46

\section*{H}
handshake mode description
(DIO modules)
default 99
full handshake mode \#5 102
read and write strobe mode \#4 101
read or write and strobe Mode \#3 100
static mode \#1 99
static mode \#2 99
handshake mode description
(RS-232)
DTR/DSR 48
None 48
RTS/CTS 48
XON/XOFF 48
high-current relays (N2264A module) 192
high-speed switching 84
I
idle state 86
IEEE 488.2 commands 161
INITiate 92, 138
Inoperative instrument 16
instrument
firmware revision 52
idle state 87
local/remote state 54
mounting onto rack 23
power on 29
power on failure 16
power on process 15
power-on state setting 44
recall state 107
serial number 53
state storage 106
store state 107
system mode selection 112
unpacking \& inspection 15
viewing errors 36
instrument errors 170
Insulation Displacement
Connector 278
interface, GPIB (IEEE 488) address selection 47
interface, RS-232
baud rate 48,49
data bits 48,50
default setting 48
flow control 48, 50
parity 48,50
setting 48
L
linking commands 163
local 54
LWORD 104
M
mainframes
general description 58
Matrix modules
general information 66
Menu key operation
card pair 41
configure external trigger 42
configure power-on state 44
configure remote interface 46
firmware revision query 52
perform self-test 51
serial number query 53
system mode 112
Mini DIN 6, 7
Mode \#1 99
Mode \#2 99
M ode \#3 100
M ode \#4 101
M ode \#5 102
Mode key operation
configure DIO module 33 configure DIO port 34
modules
dassification 61
installation 18
installation procedure 17
pairing 41
removal 17
screw terminal blocks 275
wiring information 275
modules information
44470A module 230
44470D module 233
44471A module 236
44471D module 239
44472A module 242
44473A module 245
44474A module 248
44475A module 251
44476A/B module 257
44476B module 260
44477A module 265
44478A/B module 267
N2260A module 176
N2261A module 182
N2262A module 185
N2263A module 188
N2264A module 192
N2265A module 196
N2266A module 200
N2267A module 206
N2268A module 210
N2270A module 212
N2272A module 214
N2276A/B module 217, 221
N2280A module 225
N2281A module 226
N2282A module 228
monitoring channel/slot 29, 80
mount
3499A 23
3499B 24
3499C 26
mount mainframe onto rack 23
Multifunction modules
general information 68
MUX modules
configuration 83
general information 61

\section*{N}

N2260A module channel numbering 70 configure function mode 83
default setting 83, 95
description 176
descripton 62
exception 83
relay type 62
simplified schematic 177
specifications 303
N2261A module
channel numbering 70
description 64, 182
relay type 64
simplified schematic 182
specifications 305
N2262A module
channel numbering 70
description 66, 185
relay type 66
simplified schematic 185
specifications 307
N2263A module
channel numbering 71
description 67, 188
simplified schematic 189
specifications 309
N2264A module
Caution 194
channel numbering 71
description 68, 192
relay type 68
simplified schematic 193
specifications 310
N2265A module
channel numbering 71
description 68, 196
relay type 68
simplified schematic 196
specifications 313

N2266A module channel numbering 71 configuration 202 description 62, 200 pinout 205 relay type 62 simplified schematic 201 wiring 204
N2267A module channel numbering 71
description 64, 206
pinout 209
protection network 207
relay type 64
simplified schematic 208
specifications 317
temperature control 206
wiring 208
N2268A module
channel numbering 71
description 62, 210
relay type 62
simplified schematic 210
specifications 319
N2270A module
channel numbering 72
description 62, 212
relay type 62
simplified schematic 212
specifications 321
wiring 213
N2272A module
channel numbering 72
connecting multiple 216
description 63, 214
relay type 63
simplified schematic 215
Specifications 323
wiring 215
N2276A module
channel numbering 72
configuration 219
description 217
simplified schematic 218
specifications 325
wiring 220

N2276A/B module
channel numbering 72
description 63
relay type 63
simplified schematic 218
wiring 224
N2276B module
channel numbering 72
configuration 223
description 221
specifications 325
N2280A module
channel numbering 72
description 69, 225
relay type 69
simplified schematic 225
specifications 326
wiring 225
N2281A module
channel numbering 72
description 69, 226
relay type 69
simplified schematic 226
specifications 327
wiring information 227
N2282A module
channel numbering 72
description 69, 228
relay type 69
simplified schematic 228
Specifications 328
wiring 229
N2296A Insulation
Displacement Connector 278
N2297A DIN96 to twin D50
Cable 279
N2298A DIN 96-to-D25 cable 280
N2299A DIN 96-to-D25 cable 281
N2320A Crimp and Insert
Terminal Block 283
non-latching relay (N2264A module) 192

\section*{0}
open/close relay channel 82 Optical modules general information 69
P
pair modules 41
parallel operation 58
parallel switching 84
plug-in modules
classification 61
overview 61
pairing 41
removal 17
screw terminal blocks 275
wiring information 275
plug-in modules information
44470A module 230
44470D module 233
44471A module 236
44471D module 239
44472A module 242
44473A module 245
44474A module 248
44475A module 251
44476A/B module 257
44476B module 260
44477A module 265
44478A/B module 267
N2260A module 176
N2261A module 182
N2262A module 185
N2263A module 188
N2264A module 192
N2265A module 196
N2266A module 200
N2267A module 206
N2268A module 210
N2270A module 212
N2272A module 214
N2276A/B module 217, 221
N2280A module 225
N2281A module 226
N2282A module 228
power on instrument 15, 29
power-on state setting 44
protection networks 272

\section*{R}

R/W and Strobe Mode \#3 100
Rack Mount 23
Read and Write Strobe M ode \#4 101
read from port 104
read or write and strobe mode
\#3 100
read relay cycles 111
Rear Panel 6
rear panel connectors 301
recall instrument state 107
by including into scan list 89
by setting power-on to 44
relay cycle count 111
relay protection 272
remote interface configuration
46
remote interface, GPIB (IEEE
488)
address selection 47
remote interface, RS-232
baud rate 48, 49
data bits 48, 50
default setting 48
flow control 48, 50
parity 48, 50
removemodulefrom mainframe
17
reset 22
states 74
ROUTe
CHANnel DELay 136 DELay? 136
CLOSe 127
STATe? 128
CLOSe? 127
CPAir 129
CPAir? 129
DIAGnostic SPEEK? 131
FUNCtion 130
FUNCtion? 130
OPEN 128

ROUTe
OPEN? 128
SCAN
LIST 132
LIST? 132
SIZE 132
SCAN CLEar 132
RS-232 Interface
baud rate 48, 49
connector 6
data bits 48, 50
default setting 48
described 48
flow control 48, 50
parity 48, 50
selecting interface 49
RTS/CTS 48
S
scan
list 38
list dear 39
viewing list 40
scan list
rules 79, 115
viewing 40
scanning
arm Layer 87
arm source selection 91
dearing scan list 89
creating scan list 89
external mode 93
from front-panel 38
general rules 85
idle state 87
initiating and stopping 92
process description 86
scan procedure description 86
starting 92
trigger layer 88
scanning (3488A mode)
default settings 75
scanning (SCPI mode)
arm count selection 91
default settings 75, 90
delay time setting 91

SCPI command
abbreviated 162
alphabetical reference 116
application programs 291, 293, 296, 298
channel list 115
functional reference 122
implied commands 162
linking commands 163
parameters 163
scan list 115
syntax 79, 115, 161
SCPI Mode Defaults 76
SCPI mode selection 112
screw terminal blocks summary 275
self-test 15, 51, 109
SENSe
DIGital
DATA 142
BIT? 142
BLOCK? 143
TRACe 146
TRACE
DATA? 146
serial number 53
slot
monitoring 80
slot numbers 19
SOURce
DIGital
CONTrol
POLarity 141
POLarity? 141
DATA 144
BIT 143
BLOCK 144
POLarity 141
TRACe 146
FLAG
POLarity 141
POLarity? 141
10
POLarity 141
POLarity? 141
MODE 140
MODE? 140

SOU Rce
DIGital
TRACe
DATA 146
DEFine 145
CATalog? 145
DEFine? 145
DELete 145
ALL 145
specifications
3499A/B/C 301
44470A 329
44470A 329
44471A 333
44471A 333
44471D 335
44472A 337
44472A 338
44473A 339
44473A 339
44474A 341
44475A 342
44476A 344
44476B 344
44477A 345
44477A 345
44478A 347
mainframe 301
N2260A 303
N2261A 305
N2262A 307
N2263A 309
N2264A 310
N2265A 313
N2267A 317
N2268A 319
N2270A 321
N2272A 323
N2276A 325
N2276B 325
N2280A 326
N2281A 327
N2282A 328
State Storage 60
and firmware revision 106

Static M ode \#1 99
Static M ode \#2 99
STATus
OPERation
CONDition? 150
ENABle 150
ENABle? 150
EVENt? 150
PRESet 150
store instrument state 106
Switch/Control System
features 2
mainframes description 58
plug-in modules overview 61
switching relay channel 82
SYSMODE 159
SYSMODE? 159
SYSTem
CPON 157
CTYPE? 153
ERRor? 108, 153
LOCal 160
REM ote 160
RWLoc 160
STATe
DELete 147
VERSion? 153
system mode
3488A mode selection 112
general description 58
SCPI mode selection 112

\section*{T}

Telephone 8
terminal block
4448X 285, 287
N229X 277
N2320A 283
TRIGger
I MM ediate 138
SOURce 135
SOURce? 135
TIMer 136
TIMer? 136
trigger layer 88
trigger source description 302
BUS 88
EXT 88
HOLD 88
IMM 88
MIX 88
TIMER 88
turn on instrument 29
turn on/off display 110
V
Varistors 274
VB.net 296
VHF MUX module 242
view errors 36, 108
View key operation view error 36 view scan list 40
view relay cycles 111
view scan list 40
Visual BASIC 293
Visual C++291
W
wiring
with screw terminal block 275
WORD 104
write to port 32, 105
X
XON/XOFF 48
\begin{tabular}{ll}
Manufacturer's Name: & \begin{tabular}{l}
Agilent Technologies (Malaysia) \\
Sdn. Bhd.
\end{tabular} \\
Manufacturer's Address: & \begin{tabular}{l}
Bayan Lepas Free Industrial Zone \\
11900 Penang
\end{tabular} \\
& Malaysia
\end{tabular}

\section*{Conforms with the following European Directives:}

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC (including 93/68/EEC) and carries the CE Marking accordingly.

\section*{Conforms with the following product standards:}
\begin{tabular}{|c|c|c|}
\hline EMC & Standard & Limit \\
\hline & IEC 61326-1:1997+A1:1998 / EN 61326-1:1997+A1:1998 & Group 1 Class A \\
\hline & CISPR 11:1990 / EN 55011:1991 & 4 kV CD, 8 kV AD \\
\hline & IEC 61000-4-2:1995+A1:1998 / EN 61000-4-2:1995 & \(3 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}\) \\
\hline & IEC 61000-4-3:1995 / EN 61000-4-3:1995 & 0.5 kV signal lines, 1 kV power lines \\
\hline & IEC 61000-4-4:1995 / EN 61000-4-4:1995 & 0.5 kV line-line, 1 kV line-ground \\
\hline & IEC 61000-4-5:1995 / EN 61000-4-5:1995 & \(3 \mathrm{~V}, 0.15-80 \mathrm{MHz}\) I cycle, \(100 \%\) \\
\hline & IEC 61000-4-6:1996 / EN 61000-4-6:1996 & \\
\hline & IEC 61000-4-11:1994 / EN 61000-4-11:1994 & \\
\hline & Canada: ICES-001:1998 & \\
\hline & Australia/New Zealand: AS/NZS 2064.1 & \\
\hline & This ISM device complies with Canadian ICES-001. & \\
\hline & Cet appareil ISM est conforme à la norme NMB-001 du Canada. & \\
\hline & The product was tested in a typical configuration with Agilent Tec & chnologies test systems. \\
\hline Safety & IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:19 & \\
\hline & Canada: CSA C22.2 No. 1010.1:1992 & \\
\hline
\end{tabular}

January 17, 2002
Date

Tan Boon Juan Quality Manager

For further information, please contact your local Agilent Technologies sales office, agent or distributor.

\section*{Agilent Technologies}

\author{
Agilent Technologies, Inc. \\ Printed in Malaysia \\ Revision E \\ March 2009 E0309
}
```


[^0]:    ${ }^{1}$ The 3499C is designed to accommodate multiple width plug-in modules and has 9 logical slots but 14 mechanical slots. Slots 1 through 6 are 1 -slot wide, slot 7 is 2 -slots wide, and slots 8 and 9 are each 3 -slots wide. See the figure on page 7 for more information.

[^1]:    1 Also applicable to keys Card Reset, Scan, and S.List.

